12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Turtle Functions Downstream of Cut in Differentially Regulating Class Specific Dendrite Morphogenesis in Drosophila

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Dendritic morphology largely determines patterns of synaptic connectivity and electrochemical properties of a neuron. Neurons display a myriad diversity of dendritic geometries which serve as a basis for functional classification. Several types of molecules have recently been identified which regulate dendrite morphology by acting at the levels of transcriptional regulation, direct interactions with the cytoskeleton and organelles, and cell surface interactions. Although there has been substantial progress in understanding the molecular mechanisms of dendrite morphogenesis, the specification of class-specific dendritic arbors remains largely unexplained. Furthermore, the presence of numerous regulators suggests that they must work in concert. However, presently, few genetic pathways regulating dendrite development have been defined.

          Methodology/Principal Findings

          The Drosophila gene turtle belongs to an evolutionarily conserved class of immunoglobulin superfamily members found in the nervous systems of diverse organisms. We demonstrate that Turtle is differentially expressed in Drosophila da neurons. Moreover, MARCM analyses reveal Turtle acts cell autonomously to exert class specific effects on dendritic growth and/or branching in da neuron subclasses. Using transgenic overexpression of different Turtle isoforms, we find context-dependent, isoform-specific effects on mediating dendritic branching in class II, III and IV da neurons. Finally, we demonstrate via chromatin immunoprecipitation, qPCR, and immunohistochemistry analyses that Turtle expression is positively regulated by the Cut homeodomain transcription factor and via genetic interaction studies that Turtle is downstream effector of Cut-mediated regulation of da neuron dendrite morphology.

          Conclusions/Significance

          Our findings reveal that Turtle proteins differentially regulate the acquisition of class-specific dendrite morphologies. In addition, we have established a transcriptional regulatory interaction between Cut and Turtle, representing a novel pathway for mediating class specific dendrite development.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Prediction of protein antigenic determinants from amino acid sequences.

          A method is presented for locating protein antigenic determinants by analyzing amino acid sequences in order to find the point of greatest local hydrophilicity. This is accomplished by assigning each amino acid a numerical value (hydrophilicity value) and then repetitively averaging these values along the peptide chain. The point of highest local average hydrophilicity is invariably located in, or immediately adjacent to, an antigenic determinant. It was found that the prediction success rate depended on averaging group length, with hexapeptide averages yielding optimal results. The method was developed using 12 proteins for which extensive immunochemical analysis has been carried out and subsequently was used to predict antigenic determinants for the following proteins: hepatitis B surface antigen, influenza hemagglutinins, fowl plague virus hemagglutinin, human histocompatibility antigen HLA-B7, human interferons, Escherichia coli and cholera enterotoxins, ragweed allergens Ra3 and Ra5, and streptococcal M protein. The hepatitis B surface antigen sequence was synthesized by chemical means and was shown to have antigenic activity by radioimmunoassay.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors.

            The robo gene in Drosophila was identified in a large-scale mutant screen for genes that control the decision by axons to cross the CNS midline. In robo mutants, too many axons cross and recross the midline. Here we show that robo encodes an axon guidance receptor that defines a novel subfamily of immunoglobulin superfamily proteins that is highly conserved from fruit flies to mammals. For those axons that never cross the midline, Robo is expressed on their growth cones from the outset; for the majority of axons that do cross the midline, Robo is expressed at high levels on their growth cones only after they cross the midline. Transgenic rescue experiments reveal that Robo can function in a cell-autonomous fashion. Robo appears to function as the gatekeeper controlling midline crossing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Propagation of action potentials in dendrites depends on dendritic morphology.

              Action potential propagation links information processing in different regions of the dendritic tree. To examine the contribution of dendritic morphology to the efficacy of propagation, simulations were performed in detailed reconstructions of eight different neuronal types. With identical complements of voltage-gated channels, different dendritic morphologies exhibit distinct patterns of propagation. Remarkably, the range of backpropagation efficacies observed experimentally can be reproduced by the variations in dendritic morphology alone. Dendritic geometry also determines the extent to which modulation of channel densities can affect propagation. Thus in Purkinje cells and dopamine neurons, backpropagation is relatively insensitive to changes in channel densities, whereas in pyramidal cells, backpropagation can be modulated over a wide range. We also demonstrate that forward propagation of dendritically initiated action potentials is influenced by morphology in a similar manner. We show that these functional consequences of the differences in dendritic geometries can be explained quantitatively using simple anatomical measures of dendritic branching patterns, which are captured in a reduced model of dendritic geometry. These findings indicate that differences in dendritic geometry act in concert with differences in voltage-gated channel density and kinetics to generate the diversity in dendritic action potential propagation observed between neurons. They also suggest that changes in dendritic geometry during development and plasticity will critically affect propagation. By determining the spatial pattern of action potential signaling, dendritic morphology thus helps to define the size and interdependence of functional compartments in the neuron.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                21 July 2011
                : 6
                : 7
                : e22611
                Affiliations
                [1 ]School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
                [2 ]Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia, United States of America
                Columbia University, United States of America
                Author notes

                Conceived and designed the experiments: DNC. Performed the experiments: MJS SCI MSK EPRI. Analyzed the data: MJS SCI MSK EPRI DNC. Contributed reagents/materials/analysis tools: MJS DNC. Wrote the paper: MJS DNC.

                Article
                PONE-D-11-00682
                10.1371/journal.pone.0022611
                3141077
                21811639
                a94ab233-3ac7-4bde-b7cd-00d08d9cf816
                Sulkowski et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 3 January 2011
                : 29 June 2011
                Page count
                Pages: 18
                Categories
                Research Article
                Biology
                Neuroscience
                Cellular Neuroscience
                Neuronal Morphology
                Developmental Neuroscience
                Neurogenesis
                Molecular Neuroscience

                Uncategorized
                Uncategorized

                Comments

                Comment on this article