4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Noble Metal Nanoparticles-Based Colorimetric Biosensor for Visual Quantification: A Mini Review

      ,
      Chemosensors
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nobel metal can be used to form a category of nanoparticles, termed noble metal nanoparticles (NMNPs), which are inert (resistant to oxidation/corrosion) and have unique physical and optical properties. NMNPs, particularly gold and silver nanoparticles (AuNPs and AgNPs), are highly accurate and sensitive visual biosensors for the analytical detection of a wide range of inorganic and organic compounds. The interaction between noble metal nanoparticles (NMNPs) and inorganic/organic molecules produces colorimetric shifts that enable the accurate and sensitive detection of toxins, heavy metal ions, nucleic acids, lipids, proteins, antibodies, and other molecules. Hydrogen bonding, electrostatic interactions, and steric effects of inorganic/organic molecules with NMNPs surface can react or displacing capping agents, inducing crosslinking and non-crosslinking, broadening, or shifting local surface plasmon resonance absorption. NMNPs-based biosensors have been widely applied to a series of simple, rapid, and low-cost diagnostic products using colorimetric readout or simple visual assessment. In this mini review, we introduce the concepts and properties of NMNPs with chemical reduction synthesis, tunable optical property, and surface modification technique that benefit the development of NMNPs-based colorimetric biosensors, especially for the visual quantification. The “aggregation strategy” based detection principle of NMNPs colorimetric biosensors with the mechanism of crosslinking and non-crosslinking have been discussed, particularly, the critical coagulation concentration-based salt titration methodology have been exhibited by derived equations to explain non-crosslinking strategy be applied to NMNPs based visual quantification. Among the broad categories of NMNPs based biosensor detection analyses, we typically focused on four types of molecules (melamine, single/double strand DNA, mercury ions, and proteins) with discussion from the standpoint of the interaction between NMNPs surface with molecules, and DNA engineered NMNPs-based biosensor applications. Taken together, NMNPs-based colorimetric biosensors have the potential to serve as a simple yet reliable technique to enable visual quantification.

          Related collections

          Most cited references147

          • Record: found
          • Abstract: not found
          • Article: not found

          A study of the nucleation and growth processes in the synthesis of colloidal gold

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Gold nanoparticles in chemical and biological sensing.

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid–Liquid system

                Bookmark

                Author and article information

                Journal
                CHEMO9
                Chemosensors
                Chemosensors
                MDPI AG
                2227-9040
                December 2019
                October 31 2019
                : 7
                : 4
                : 53
                Article
                10.3390/chemosensors7040053
                a982804a-16d0-4e00-bd09-4ad205f24b03
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article