17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Tiam1-Rac1 Axis Promotes Activation of p38 MAP Kinase in the Development of Diabetic Retinopathy: Evidence for a Requisite Role for Protein Palmitoylation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background/Aims

          Evidence in multiple tissues, including retina, suggests generation of reactive oxygen species (ROS) and the ensuing oxidative stress as triggers for mitochondrial defects and cell apoptosis. We recently reported novel roles for Tiam1-Rac1-Nox2 axis in retinal mitochondrial dysfunction and cell death leading to the development of diabetic retinopathy. Herein, we tested the hypothesis that activation of p38 MAP kinase, a stress kinase, represents the downstream signaling event to Rac1-Nox2 activation in diabetes-induced metabolic stress leading to capillary cell apoptosis.

          Methods

          Activation of p38 MAP kinase was quantified by Western blotting in retinal endothelial cells incubated with high glucose (20 mM) for up to 96 hours, a duration where mitochondrial dysfunction and capillary cell apoptosis can be observed. NSC23766 and 2-bromopalmitate (2-BP) were used to assess the roles of Tiam1-Rac1 and palmitoylation pathways, respectively.

          Results

          Activation of p38 MAP kinase was observed as early as 3 hours after high glucose exposure, and continued until 96 hours. Consistent with this, p38 MAP kinase activation was significantly higher in the retina from diabetic mice compared to age-matched normal mice. NSC23766 markedly attenuated hyperglycemia-induced activation of p38 MAP kinase. Lastly, 2-BP inhibited glucose-induced Rac1, Nox2 and p38 MAP kinase activation in endothelial cells.

          Conclusions

          Tiam1-Rac1-mediated activation of Nox2 and p38 MAP kinase constitutes early signaling events leading to mitochondrial dysfunction and the development of diabetic retinopathy. Our findings also provide the first evidence to implicate novel roles for protein palmitoylation in this signaling cascade.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          Diabetic retinopathy.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase.

            Superoxide levels are elevated in the retina in patients with diabetes, and cytochrome c is released from the mitochondria. The purpose of this study was to elucidate the mechanism involved in the oxidative damage of retinal mitochondria in diabetes and to determine whether mitochondrial superoxide dismutase (MnSOD) provides protection. Effects of diabetes were investigated on superoxide and GSH levels, electron transport complexes I and III, and membrane permeability in the isolated mitochondria prepared from the retinas of streptozotocin diabetic mice. To investigate the effect of MnSOD, retinal mitochondrial oxidative stress and electron transport complexes were determined in mice overexpressing MnSOD (MnSOD-Tg). Histopathology was evaluated in trypsin-digested retina. Retinal mitochondria had twofold increase in superoxide levels in nontransgenic (wild-type [WT]) diabetic mice compared with WT nondiabetic mice. In the same retina, diabetes decreased mitochondrial GSH levels by 40% and complex III activity by approximately 20%, and it increased mitochondrial membrane permeability (swelling) by more than twofold; however, complex I activity was not affected. Overexpression of MnSOD inhibited diabetes-induced increases in mitochondrial superoxide levels and membrane permeability and the decrease in complex III activity. GSH values, however, were not statistically different in WT and MnSOD-Tg diabetic mice. In contrast to the diabetes-induced increase in the number of degenerate (acellular) capillaries in WT diabetic mice, the numbers of acellular capillaries in MnSOD-Tg nondiabetic and diabetic mice were similar to those in WT nondiabetic mice. Retinal mitochondria experience increased oxidative damage in diabetes, and complex III is one of the sources of increased superoxide. MnSOD protects the retina from diabetes-induced abnormalities in the mitochondria and prevents vascular histopathology, strongly implicating the role for MnSOD in the pathogenesis of retinopathy in diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A palmitoylation switch mechanism regulates Rac1 function and membrane organization.

              The small GTPase Rac1 plays important roles in many processes, including cytoskeletal reorganization, cell migration, cell-cycle progression and gene expression. The initiation of Rac1 signalling requires at least two mechanisms: GTP loading via the guanosine triphosphate (GTP)/guanosine diphosphate (GDP) cycle, and targeting to cholesterol-rich liquid-ordered plasma membrane microdomains. Little is known about the molecular mechanisms governing this specific compartmentalization. We show that Rac1 can incorporate palmitate at cysteine 178 and that this post-translational modification targets Rac1 for stabilization at actin cytoskeleton-linked ordered membrane regions. Palmitoylation of Rac1 requires its prior prenylation and the intact C-terminal polybasic region and is regulated by the triproline-rich motif. Non-palmitoylated Rac1 shows decreased GTP loading and lower association with detergent-resistant (liquid-ordered) membranes (DRMs). Cells expressing no Rac1 or a palmitoylation-deficient mutant have an increased content of disordered membrane domains, and markers of ordered membranes isolated from Rac1-deficient cells do not correctly partition in DRMs. Importantly, cells lacking Rac1 palmitoylation show spreading and migration defects. These data identify palmitoylation as a mechanism for Rac1 function in actin cytoskeleton remodelling by controlling its membrane partitioning, which in turn regulates membrane organization.
                Bookmark

                Author and article information

                Journal
                9113221
                20931
                Cell Physiol Biochem
                Cell. Physiol. Biochem.
                Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
                1015-8987
                1421-9778
                6 May 2015
                30 April 2015
                2015
                30 April 2016
                : 36
                : 1
                : 208-220
                Affiliations
                [a ]Ophthalmology, Wayne State University
                [b ]Pharmaceutical Sciences, Wayne State University
                [c ]β-Cell Biochemistry Laboratory, John D. Dingell VA Medical Center, Detroit, MI, USA
                Author notes
                Anjan Kowluru, Ph.D., B4237, Research Service, John D. Dingell VA Medical Center, 4646 John R, Detroit, MI 48201 (USA), Tel. +1 313-576-4478, Fax +1313-576-1112, akowluru@ 123456med.wayne.edu

                R. Veluthakal and B. Kumar contributed equally to this work.

                Article
                NIHMS687210
                10.1159/000374065
                4435616
                25967961
                a98e0fee-6f02-4c02-96dc-f65da1d28f0b
                Copyright © 2015 S. Karger AG, Basel

                This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC) (www.karger.com/OA-license), applicable to the online version of the article only. Distribution permitted for non-commercial purposes only.

                History
                Categories
                Article

                nsc23766,2-bromopalmitate,p38 map kinase,nox2,rac1,tiam1 and diabetic,retinopathy

                Comments

                Comment on this article