34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references718

          • Record: found
          • Abstract: not found
          • Article: not found

          A new fungal phylum, the Glomeromycota: phylogeny and evolution

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host.

            Batrachochytrium dendrobatidis (Bd) is a chytrid fungus that causes chytridiomycosis in amphibians. Only named in 1999, Bd is a proximate driver of declines in global amphibian biodiversity. The pathogen infects over 350 species of amphibians and is found on all continents except Antarctica. However, the processes that have led to the global distribution of Bd and the occurrence of chytridiomycosis remain unclear. This review explores the molecular, epidemiological, and ecological evidence that Bd evolved from an endemic ancestral lineage to achieve global prominence via anthropogenically mediated spread. We then consider the major host and pathogen factors that have led to the occurrence of chytridiomycosis in amphibian species, populations, and communities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians.

              The current biodiversity crisis encompasses a sixth mass extinction event affecting the entire class of amphibians. The infectious disease chytridiomycosis is considered one of the major drivers of global amphibian population decline and extinction and is thought to be caused by a single species of aquatic fungus, Batrachochytrium dendrobatidis. However, several amphibian population declines remain unexplained, among them a steep decrease in fire salamander populations (Salamandra salamandra) that has brought this species to the edge of local extinction. Here we isolated and characterized a unique chytrid fungus, Batrachochytrium salamandrivorans sp. nov., from this salamander population. This chytrid causes erosive skin disease and rapid mortality in experimentally infected fire salamanders and was present in skin lesions of salamanders found dead during the decline event. Together with the closely related B. dendrobatidis, this taxon forms a well-supported chytridiomycete clade, adapted to vertebrate hosts and highly pathogenic to amphibians. However, the lower thermal growth preference of B. salamandrivorans, compared with B. dendrobatidis, and resistance of midwife toads (Alytes obstetricans) to experimental infection with B. salamandrivorans suggest differential niche occupation of the two chytrid fungi.
                Bookmark

                Author and article information

                Journal
                Fungal Diversity
                Fungal Diversity
                Springer Nature
                1560-2745
                1878-9129
                September 2018
                September 19 2018
                September 2018
                : 92
                : 1
                : 43-129
                Article
                10.1007/s13225-018-0409-5
                a99d400e-e55b-4f37-ba8a-29812415a869
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article