94
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The salivary microbiota as a diagnostic indicator of oral cancer: A descriptive, non-randomized study of cancer-free and oral squamous cell carcinoma subjects

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The purpose of the present investigation was to determine if the salivary counts of 40 common oral bacteria in subjects with an oral squamous cell carcinoma (OSCC) lesion would differ from those found in cancer-free (OSCC-free) controls.

          Methods

          Unstimulated saliva samples were collected from 229 OSCC-free and 45 OSCC subjects and evaluated for their content of 40 common oral bacteria using checkerboard DNA-DNA hybridization. DNA counts per ml saliva were determined for each species, averaged across subjects in the 2 subject groups, and significance of differences between groups determined using the Mann-Whitney test and adjusted for multiple comparisons. Diagnostic sensitivity and specificity in detection of OSCC by levels of salivary organisms were computed and comparisons made separately between a non-matched group of 45 OSCC subjects and 229 controls and a group of 45 OSCC subjects and 45 controls matched by age, gender and smoking history.

          Results

          Counts of 3 of the 40 species tested, Capnocytophaga gingivalis, Prevotella melaninogenica and Streptococcus mitis, were elevated in the saliva of individuals with OSCC (p < 0.001). When tested as diagnostic markers the 3 species were found to predict 80% of cancer cases (sensitivity) while excluding 83% of controls (specificity) in the non-matched group. Diagnostic sensitivity and specificity in the matched group were 80% and 82% respectively.

          Conclusion

          High salivary counts of C. gingivalis, P. melaninogenica and S. mitis may be diagnostic indicators of OSCC.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Smoking and drinking in relation to oral and pharyngeal cancer.

          A case-control study of oral and pharyngeal cancer conducted in four areas of the United States provided information on the tobacco and alcohol use of 1114 patients and 1268 population-based controls. Because of the large study size, it could be shown that the risks of these cancers among nondrinkers increased with amount smoked, and conversely that the risks among nonsmokers increased with the level of alcohol intake. Among consumers of both products, risks of oropharyngeal cancer tended to combine more in a multiplicative than additive fashion and were increased more than 35-fold among those who consumed two or more packs of cigarettes and more than four alcoholic drinks/day. Cigarette, cigar, and pipe smoking were separately implicated, although it was shown for the first time that risk was not as high among male lifelong filter cigarette smokers. Cessation of smoking was associated with a sharply reduced risk of this cancer, with no excess detected among those having quit for 10 or more years, suggesting that smoking affects primarily a late stage in the process of oropharyngeal carcinogenesis. The risks varied by type of alcoholic beverage, being higher among those consuming hard liquor or beer than wine. The relative risk patterns were generally similar among whites and blacks, and among males and females, and showed little difference when oral and pharyngeal cancers were analyzed separately. From calculations of attributable risk, we estimate that tobacco smoking and alcohol drinking combine to account for approximately three-fourths of all oral and pharyngeal cancers in the United States.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Distribution of selected bacterial species on intraoral surfaces.

            To examine the proportions of 40 bacterial species in samples from 8 oral soft tissue surfaces and saliva in systemically healthy adult subjects and to compare these microbiotas with those of supra- and subgingival plaque. Microbial samples were taken from 8 oral soft tissue surfaces of 225 systemically healthy subjects using a "buccal brush". Saliva was taken by expectoration. Forty-four of these subjects provided additional supra- and subgingival plaque samples. Samples were individually evaluated for their content of 40 bacterial species using checkerboard DNA-DNA hybridization. The percentage of total DNA probe count was determined for each species, at each sample location and averaged across subjects. The significance of differences among the proportions of the 40 test species at different sample locations was sought in the 225 and 44 subjects separately using the Quade test and adjusted for multiple comparisons. Cluster analysis was performed using the proportions of the 40 species at the different sample locations using the minimum similarity coefficient and an average unweighted linkage sort. The proportions of each species were averaged across subjects in the resulting cluster groups and the significance of differences was tested using the t-test and ANOVA. Microbial profiles differed markedly among sample locations in the 225 subjects, with 34 of 40 species differing significantly. Proportions of Veillonella parvula and Prevotella melaninogenica were higher in saliva and on the lateral and dorsal surfaces of the tongue, while Streptococcus mitis and S. oralis were in significantly lower proportions in saliva and on the tongue dorsum. Cluster analysis resulted in the formation of 2 clusters with >85% similarity. Cluster 1 comprised saliva, lateral and dorsal tongue surfaces, while Cluster 2 comprised the remaining soft tissue locations. V. parvula, P. melaninogenica, Eikenella corrodens, Neisseria mucosa, Actinomyces odontolyticus, Fusobacterium periodonticum, F. nucleatum ss vincentii and Porphyromonas gingivalis were in significantly higher proportions in Cluster 1 and S. mitis, S. oralis and S. noxia were significantly higher in Cluster 2. These findings were confirmed using data from the 44 subjects providing plaque samples. The microbial profiles of supra- and subgingival plaque differed from the other sample locations, particularly in the increased proportions of the Actinomyces species. Species of different genera exhibited different proportions on the various intraoral surfaces, but even within the genus Streptococcus, there were differences in colonization patterns. S. oralis, S. mitis and S. constellatus colonized the soft tissues and saliva in higher proportions than the samples from the teeth, while the other 4 streptococcal species examined colonized the dental surfaces in proportions comparable to the soft tissue locations and saliva. Proportions of bacterial species differed markedly on different intraoral surfaces. The microbiota of saliva was most similar to that of the dorsal and lateral surfaces of the tongue. The microbiotas of the soft tissues resembled each other more than the microbiotas that colonized the teeth both above and below the gingival margin.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism.

              S Hakomori (1996)
              Aberrant glycosylation expressed in glycosphingolipids and glycoproteins in tumor cells has been implicated as an essential mechanism in defining stage, direction, and fate of tumor progression. This general concept is supported by results from three lines of study: (a) Numerous clinicopathological studies have shown a clear correlation between aberrant glycosylation status of primary tumor and invasive/metastatic potential of human cancer as reflected by 5- or 10-year survival rates of patients. (b) Carbohydrates expressed in tumor cells are either adhesion molecules per se or modulate adhesion receptor function. Some are directly involved in cell adhesion. They are recognized by selectins or other carbohydrate-binding proteins or by complementary carbohydrates (through carbohydrate-carbohydrate interaction). N- or O-glycosylation of functionally important membrane components may alter tumor cell adhesion or motility in a direction that either promotes or inhibits invasion and metastasis. Examples of such receptors are E-cadherin, integrins, immunoglobulin family receptors (e.g., CD44), and lysosome-associated membrane protein. (c) Gangliosides and sphingolipids modulate transmembrane signaling essential for tumor cell growth, invasion, and metastasis. The transducer molecules susceptible to gangliosides and sphingolipids include integrin receptors, tyrosine kinase-linked growth factor receptors, protein kinase C, and G-protein-linked receptor affecting protein kinase A. Some glycosphingolipids (e.g., Gb3Cer, Le(y), ceramide, and sphingosine induce tumor cell differentiation and subsequent apoptosis. Shedded gangliosides may block immunogenicity of tumor cells, providing conditions favorable for "escape" from immunological suppression of tumor growth by the host. Various reagents that block carbohydrate-mediated tumor cell adhesion or block glycosylation processing have been shown to inhibit tumor cell metastasis. This provides the basis for further development of "anti-adhesion therapy." Ganglioside analogues and sphingolipid analogues that inhibit protein kinase C and receptor-associated tyrosine kinase have been applied for inhibition of metastasis. A crucial mechanism for inhibition of metastasis by these reagents may involve blocking of transmembrane signaling for expression of P- and E-selectin. This provides the basis for development of "ortho-signaling therapy."
                Bookmark

                Author and article information

                Journal
                J Transl Med
                Journal of Translational Medicine
                BioMed Central (London )
                1479-5876
                2005
                7 July 2005
                : 3
                : 27
                Affiliations
                [1 ]The Forsyth Institute, 140 The Fenway, Boston, MA, USA
                [2 ]Brigham and Women's Hospital, 27 Francis Street, Boston, MA, USA
                [3 ]Dana Farber Cancer Institute, 44 Binney Street, Boston, MA, USA
                Article
                1479-5876-3-27
                10.1186/1479-5876-3-27
                1226180
                15987522
                a99e1e8c-af12-4ac2-a0ac-725e520b733a
                Copyright © 2005 Mager et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 February 2005
                : 7 July 2005
                Categories
                Research

                Medicine
                oral mucosa,oral squamous cell carcinoma,bacterial markers,bacteria,early detection
                Medicine
                oral mucosa, oral squamous cell carcinoma, bacterial markers, bacteria, early detection

                Comments

                Comment on this article