16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Effect of low-frequency repetitive transcranial magnetic stimulation on interhemispheric inhibition.

      Journal of Neurophysiology
      Adult, Analysis of Variance, Dose-Response Relationship, Radiation, Electric Stimulation, methods, Electromagnetic Phenomena, Electromyography, Evoked Potentials, Motor, physiology, radiation effects, Female, Functional Laterality, Humans, Male, Middle Aged, Motor Cortex, Neural Inhibition, Time Factors

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We studied the effects of 1-Hz repetitive transcranial magnetic stimulation (rTMS) on the excitability of interhemispheric connections in 13 right-handed healthy volunteers. TMS was performed using figure-eight coils, and surface electromyography (EMG) was recorded from both first dorsal interosseous (FDI) muscles. A paired-pulse method with a conditioning stimulus (CS) to the motor cortex (M1) followed by a test stimulus to the opposite M1 was used to study the interhemispheric inhibition (ppIHI). Both CS and TS were adjusted to produce motor-evoked potentials of approximately 1 mV in the contralateral FDI muscles. After baseline measurement of right-to-left IHI (pre-RIHI) and left-to-right IHI (pre-LIHI), rTMS was applied over left M1 at 1 Hz with 900 stimuli at 115% of resting motor threshold. After rTMS, ppIHI was studied using both the pre-rTMS CS (post-RIHI and post-LIHI) and an adjusted post-rTMS CS set to produce 1-mV motor evoked potentials (MEPs; post-RIHI(adj) and post-LIHI(adj)). The TS was set to produce 1-mV MEPs. There was a significant reduction in post-LIHI (P = 0.0049) and post-LIHI(adj) (P = 0.0169) compared with pre-LIHI at both interstimulus intervals of 10 and 40 ms. Post-RIHI was significantly reduced compared with pre-RIHI (P = 0.0015) but pre-RIHI and post-RIHI(adj) were not significantly different. We conclude that 1-Hz rTMS reduces IHI in both directions but is predominantly from the stimulated to the unstimulated hemisphere. Low-frequency rTMS may be used to modulate the excitability of IHI circuits. Treatment protocols using low-frequency rTMS to reduce cortical excitability in neurological and psychiatric conditions need to take into account their effects on IHI.

          Related collections

          Author and article information

          Comments

          Comment on this article