0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expanding the Allelic Heterogeneity of ANO10-Associated Autosomal Recessive Cerebellar Ataxia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Objectives

          The term autosomal recessive cerebellar ataxia (ARCA) encompasses a diverse group of heterogeneous degenerative disorders of the cerebellum. Spinocerebellar ataxia autosomal recessive 10 (SCAR10) is a distinct classification of cerebellar ataxia caused by variants in the ANO10 gene. Little is known about the molecular role of ANO10 or its role in disease. There is a wide phenotypic spectrum among patients, even among those with the same or similar genetic variants. This study aimed to characterize the molecular consequences of variants in ANO10 and determine their pathologic significance in patients diagnosed with SCAR10.

          Methods

          We presented 4 patients from 4 families diagnosed with spinocerebellar ataxia with potential pathogenic variants in the ANO10 gene. Patients underwent either clinical whole-exome sequencing or screening of a panel of known neuromuscular disease genes. Effects on splicing were studied using reverse transcriptase PCR to analyze complementary DNA. Western blots were used to examine protein expression.

          Results

          One individual who presented clinically at a much earlier age than typical was homozygous for an ANO10 variant (c.1864A > G [p.Met622Val]) that produces 2 transcription products by altering an exonic enhancer site. Two patients, both of Lebanese descent, had a homozygous intronic splicing variant in ANO10 (c.1163-9A > G) that introduced a cryptic splice site acceptor, producing 2 alternative transcription products and no detectable wild-type protein. Both these variants have not yet been associated with SCAR10. The remaining patient was found to have compound heterozygous variants in ANO10 previously associated with SCAR10 (c.132dupA [p.Asp45Argfs*9] and c.1537T > C [p.Cys513Arg]).

          Discussion

          We presented rare pathogenic variants adding to the growing list of ANO10 variants associated with SCAR10. In addition, we described an individual with a much earlier age at onset than usually associated with ANO10 variants. This expands the phenotypic and allelic heterogeneity of ANO10-associated ARCA.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Fiji: an open-source platform for biological-image analysis.

          Fiji is a distribution of the popular open-source software ImageJ focused on biological-image analysis. Fiji uses modern software engineering practices to combine powerful software libraries with a broad range of scripting languages to enable rapid prototyping of image-processing algorithms. Fiji facilitates the transformation of new algorithms into ImageJ plugins that can be shared with end users through an integrated update system. We propose Fiji as a platform for productive collaboration between computer science and biology research communities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Human Splicing Finder: an online bioinformatics tool to predict splicing signals

            Thousands of mutations are identified yearly. Although many directly affect protein expression, an increasing proportion of mutations is now believed to influence mRNA splicing. They mostly affect existing splice sites, but synonymous, non-synonymous or nonsense mutations can also create or disrupt splice sites or auxiliary cis-splicing sequences. To facilitate the analysis of the different mutations, we designed Human Splicing Finder (HSF), a tool to predict the effects of mutations on splicing signals or to identify splicing motifs in any human sequence. It contains all available matrices for auxiliary sequence prediction as well as new ones for binding sites of the 9G8 and Tra2-β Serine-Arginine proteins and the hnRNP A1 ribonucleoprotein. We also developed new Position Weight Matrices to assess the strength of 5′ and 3′ splice sites and branch points. We evaluated HSF efficiency using a set of 83 intronic and 35 exonic mutations known to result in splicing defects. We showed that the mutation effect was correctly predicted in almost all cases. HSF could thus represent a valuable resource for research, diagnostic and therapeutic (e.g. therapeutic exon skipping) purposes as well as for global studies, such as the GEN2PHEN European Project or the Human Variome Project.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inositol trisphosphate and calcium signalling.

              Inositol trisphosphate is a second messenger that controls many cellular processes by generating internal calcium signals. It operates through receptors whose molecular and physiological properties closely resemble the calcium-mobilizing ryanodine receptors of muscle. This family of intracellular calcium channels displays the regenerative process of calcium-induced calcium release responsible for the complex spatiotemporal patterns of calcium waves and oscillations. Such a dynamic signalling pathway controls many cellular processes, including fertilization, cell growth, transformation, secretion, smooth muscle contraction, sensory perception and neuronal signalling.
                Bookmark

                Author and article information

                Journal
                Neurol Genet
                Neurol Genet
                nng
                NNG
                Neurology: Genetics
                Wolters Kluwer (Baltimore )
                2376-7839
                February 2023
                23 January 2023
                23 January 2023
                : 9
                : 1
                : e200051
                Affiliations
                From the Brain and Mitochondrial Research Group (S.M., N.J.V.B., J.C.), Murdoch Children's Research Institute, Melbourne, VIC, Australia; Centre for Applied Genomics (Y.G., H.H.), Children's Hospital of Philadelphia, PA; Centre for Data Driven Discovery in Biomedicine (Y.G.), Children's Hospital of Philadelphia, PA; Rare Diseases Functional Genomics (L.G.R., S.C.), Kids Research, The Children's Hospital at Westmead and Children's Medical Research Institute, Sydney, NSW, Australia; Specialty of Child and Adolescent Health (L.G.R., S.C.), University of Sydney, NSW, Australia; Department of Paediatrics (N.J.V.B., J.C.), University of Melbourne, VIC, Australia; Department of Paediatrics and Child Health (S.A.S.), University of Sydney, NSW, Australia; Department of Clinical Genetics (S.A.S.), The Children's Hospital at Westmead, Sydney, NSW, Australia; Department of Genetic Medicine (M.T.), Westmead Hospital, Sydney, NSW, Australia; Department of Neurology (E.M.), Westmead Hospital, Sydney (NSW), Australia; Laboratory of Diagnostic Innovation in Rare Diseases (C.T.-R.), CHU Dijon Bourgogne, France; Genetics Center (C.T.-R.), CHU Dijon Bourgogne, France; Neurology (Q.T., T.M.), CHU Dijon Bourgogne, France; Diagnostics Genomics (M.D.), PathWest Laboratory Medicine, Perth, WA, Australia; and Department of Clinical Genetics (D.S., G.M.S.M.), ErasmusMC University Medical Center, Rotterdam, ZH, the Netherlands.
                Author notes
                Correspondence Dr. Christodoulou john.christodoulou@ 123456mcri.edu.au

                Funding information and disclosures are provided at the end of the article. Full disclosure form information provided by the authors is available with the full text of this article at Neurology.org/NG.

                [*]

                These authors contributed equally to this work as first authors.

                [†]

                These authors contributed equally to this work as last authors.

                The Article Processing Charge was funded by the authors.

                Submitted and externally peer reviewed. The handling editor was Editor Stefan M. Pulst, MD, Dr med, FAAN.

                Author information
                https://orcid.org/0000-0002-0759-9306
                https://orcid.org/0000-0001-9700-7898
                https://orcid.org/0000-0003-1185-1663
                https://orcid.org/0000-0002-8431-0641
                Article
                NXG-2022-200054
                10.1212/NXG.0000000000200051
                9872716
                36698452
                a9ead4fb-6f85-48fb-90f1-494102651341
                Copyright © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND), which permits downloading and sharing the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

                History
                : 02 June 2022
                : 15 November 2022
                Categories
                163
                228
                298
                312
                91
                Research Article
                Custom metadata
                TRUE

                Comments

                Comment on this article