13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      HIF-1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up-regulation in hypoxic tumor microenvironment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The incidence and mortality rates of hepatocellular carcinoma (HCC) have steadily increased in recent years. A hypoxic microenvironment is one of the most important characteristics of solid tumors which has been shown to promote tumor metastasis, epithelial-mesenchymal transition and angiogenesis. Epithelial-mesenchymal transition and vasculogenic mimicry have been regarded as crucial contributing factors to cancer progression. HIF-1α functions as a master transcriptional regulator in the adaptive response to hypoxia. Lysyl oxidases like 2 (LOXL2) is a member of the lysyl oxidase family, which main function is to catalyze the covalent cross-linkages of collagen and elastin in the extracellular matrix. Recent work has demonstrated that HIF-1α promotes the expression of LOXL2, which is believed to amplify tumor aggressiveness. LOXL2 has shown to promote metastasis and is correlated with poor prognosis in hepatocellular carcinoma. The purpose of our study is to explore the role of HIF-1α in progression and metastasis of hepatocellular carcinoma by promoting the expression of LOXL2 as well as the potential regulatory mechanism.

          Methods

          HIF-1α, LOXL2 expression and CD31/periodic acid-Schiff double staining in HCC patient samples were examined by immunohistochemical staining. shRNA plasmids against HIF-1α was used to determine whether LOXL2 been increased by HIF-1α. We monitored a series of rescue assays to demonstrate our hypothesis that LOXL2 is required and sufficient for HIF-1α induced EMT and VM formation, which mediates cellular transformation and takes effect in cellular invasion. Then we performed GeneChip® Human Transcriptome Array (HTA) 2.0 in HepG2 cells, HepG2 cells overexpressed LOXL2 and HepG2 cells treated with CoCl 2.

          Results

          In clinical HCC tissues, it confirmed a positive relationship between HIF-1α and LOXL2 protein. Importantly, HIF-1α and LOXL2 high expression and the presence of vasculogenic mimicry were correlated to poor prognosis. HIF-1α was found to induce EMT, HCC cell migration, invasion and VM formation by regulating LOXL2. The results of microarray assays were analyzed.

          Conclusion

          HIF-1α plays an important role in the development of HCC by promoting HCC metastasis, EMT and VM through up-regulating LOXL2. This study highlights the potential therapeutic value of targeting LOXL2 for suppression of HCC metastasis and progression.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13046-017-0533-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry.

          Tissue sections from aggressive human intraocular (uveal) and metastatic cutaneous melanomas generally lack evidence of significant necrosis and contain patterned networks of interconnected loops of extracellular matrix. The matrix that forms these loops or networks may be solid or hollow. Red blood cells have been detected within the hollow channel components of this patterned matrix histologically, and these vascular channel networks have been detected in human tumors angiographically. Endothelial cells were not identified within these matrix-embedded channels by light microscopy, by transmission electron microscopy, or by using an immunohistochemical panel of endothelial cell markers (Factor VIII-related antigen, Ulex, CD31, CD34, and KDR[Flk-1]). Highly invasive primary and metastatic human melanoma cells formed patterned solid and hollow matrix channels (seen in tissue sections of aggressive primary and metastatic human melanomas) in three-dimensional cultures containing Matrigel or dilute Type I collagen, without endothelial cells or fibroblasts. These tumor cell-generated patterned channels conducted dye, highlighting looping patterns visualized angiographically in human tumors. Neither normal melanocytes nor poorly invasive melanoma cells generated these patterned channels in vitro under identical culture conditions, even after the addition of conditioned medium from metastatic pattern-forming melanoma cells, soluble growth factors, or regimes of hypoxia. Highly invasive and metastatic human melanoma cells, but not poorly invasive melanoma cells, contracted and remodeled floating hydrated gels, providing a biomechanical explanation for the generation of microvessels in vitro. cDNA microarray analysis of highly invasive versus poorly invasive melanoma tumor cells confirmed a genetic reversion to a pluripotent embryonic-like genotype in the highly aggressive melanoma cells. These observations strongly suggest that aggressive melanoma cells may generate vascular channels that facilitate tumor perfusion independent of tumor angiogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hypoxia-inducible factors, stem cells, and cancer.

            Regions of severe oxygen deprivation (hypoxia) arise in tumors due to rapid cell division and aberrant blood vessel formation. The hypoxia-inducible factors (HIFs) mediate transcriptional responses to localized hypoxia in normal tissues and in cancers and can promote tumor progression by altering cellular metabolism and stimulating angiogenesis. Recently, HIFs have been shown to activate specific signaling pathways such as Notch and the expression of transcription factors such as Oct4 that control stem cell self renewal and multipotency. As many cancers are thought to develop from a small number of transformed, self-renewing, and multipotent "cancer stem cells," these results suggest new roles for HIFs in tumor progression.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features.

              The spread of multiple myeloma (MM) involves (re)circulation into the peripheral blood and (re)entrance or homing of MM cells into new sites of the BM. Hypoxia in solid tumors was shown to promote metastasis through activation of proteins involved in the epithelial-mesenchymal transition (EMT) process. We hypothesized that MM-associated hypoxic conditions activate EMT-related proteins and promote metastasis of MM cells. In the present study, we have shown that hypoxia activates EMT-related machinery in MM cells, decreases the expression of E-cadherin, and, consequently, decreases the adhesion of MM cells to the BM and enhances egress of MM cells to the circulation. In parallel, hypoxia increased the expression of CXCR4, consequently increasing the migration and homing of circulating MM cells to new BM niches. Further studies to manipulate hypoxia to regulate tumor dissemination as a therapeutic strategy are warranted.
                Bookmark

                Author and article information

                Contributors
                ml2608@sina.com
                86-13602042200 , xiulanzhao@aliyun.com
                zhudongwangtj@126.com
                liutieju@126.com
                liangxiaohui123@126.com
                liubenyi28@163.com
                Yanhuizhang015@163.com
                dxy7235202@126.com
                86-13602042200 , baocunsun@aliyun.com
                Journal
                J Exp Clin Cancer Res
                J. Exp. Clin. Cancer Res
                Journal of Experimental & Clinical Cancer Research : CR
                BioMed Central (London )
                0392-9078
                1756-9966
                27 April 2017
                27 April 2017
                2017
                : 36
                : 60
                Affiliations
                [1 ]ISNI 0000 0000 9792 1228, GRID grid.265021.2, Department of Pathology, , Tianjin Medical University, ; Tianjin, 300070 China
                [2 ]ISNI 0000 0000 9792 1228, GRID grid.265021.2, Department of Surgery, , Stomatological Hospital of Tianjin Medical University, ; Tianjin, 300070 China
                [3 ]ISNI 0000 0004 1757 9434, GRID grid.412645.0, Department of Pathology, , General Hospital of Tianjin Medical University, ; Tianjin, 300052 China
                [4 ]ISNI 0000 0004 1798 6427, GRID grid.411918.4, Department of Pathology, , Cancer Hospital of Tianjin Medical University, ; Tianjin, 300060 China
                Article
                533
                10.1186/s13046-017-0533-1
                5408450
                28449718
                aa031aa5-bcef-4a54-b58c-28feac9f17bb
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 23 December 2016
                : 21 April 2017
                Funding
                Funded by: 1.The National Natural Science Foundation of China
                Award ID: NO.81572872
                Award Recipient :
                Funded by: 2.Key project of the National Natural Science Foundation of China
                Award ID: NO. 81230050
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Oncology & Radiotherapy
                hypoxic tumor microenvironment,hif-1α,loxl2,vasculogenic mimicry,emt,tumor progression,hepatocellular carcinoma

                Comments

                Comment on this article