15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The PARP inhibitor AZD2281 (Olaparib) induces autophagy/mitophagy in BRCA1 and BRCA2 mutant breast cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          PARP inhibitors are considered promising anti-cancer agents and currently being tested in clinical trials in hereditary breast cancer patients harboring mutations in BRCA1 and BRCA2 genes. In this study, we investigated the antiproliferative effects and mechanism of PARP inhibitors ABT-888 (Veliparib), BSI-201 (Iniparib) and AZD228 (Olaparib) in breast cancer cell lines with BRCA1 or BRCA2 mutations and 9 different BRCA wild-type cell lines with BRCA1 allelic loss. We found that AZD2281 was the most potent in the PARP inhibitors and induces significant growth inhibition (~95%) in BRCA1 mutant (HCC-1937, MDA-MB-436, and SUM-149PT) and BRCA2 mutant (HCC-1428) cell lines. AZD2281 treatment also resulted in growth inhibition ranging from 20 to 50% in cells with BRCA1 allelic loss, including ER(+), HER2/Neu(+) and triple-negative breast cancer (TNBC) cells, but showed no effect in cells without with type BRCA without allelic loss. Knocking down of BRCA1 or BRCA2 in TNBC cells with BRCA1 allelic loss by RNA interference significantly enhanced AZD2281-induced growth inhibition and induced significant autophagy that was associated with mitophagy in cells with BRCA mutations. Inhibition of autophagy by gene knockdown significantly diminished AZD2281-induced mitophagy and apoptosis, indicating that autophagic process mediates some of the downstream effects of PARP inhibitors. In conclusion, our data provide the first evidence of PARP inhibitor AZD2281 autophagy and mitophagy in breast cancer cell lines with BRCA mutations or BRCA-allelic loss. In addition, our results indicate that the patients with BRCA1 allelic loss may also benefit from PARP inhibitor therapy if BRCA is further inhibited.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2.

          The morphologic and molecular phenotype of breast cancers may help identify patients who are likely to carry germline mutations in BRCA1 and BRCA2. This study evaluates the immunohistochemical profiles of tumors arising in patients with mutations in these genes. Samples of breast cancers obtained from the International Breast Cancer Linkage Consortium were characterized morphologically and immunohistochemically using antibodies to estrogen receptor, progesterone receptor, HER-2 (c-erbB-2 oncogene), and p53 protein. Breast cancers in patients with BRCA1 germline mutations are more often negative for estrogen receptor, progesterone receptor, and HER-2, and are more likely to be positive for p53 protein compared with controls. In contrast, BRCA2 tumors do not show a significant difference in the expression of any of these proteins compared with controls. BRCA1 has a distinctive morphology and immunohistochemical phenotype. The combined morphologic and immunohistochemical data can be used to predict the risk of a young patient harboring a germline mutation in BRCA1. The BRCA2 phenotype is currently not well defined.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting the prodeath and prosurvival functions of autophagy as novel therapeutic strategies in cancer.

            Autophagy is an evolutionarily conserved lysosomal pathway for degrading cytoplasmic proteins, macromolecules, and organelles. While autophagy has become one of the most attractive topics in cancer research, the current autophagy literature is often viewed as confusing, because of its association with apparently contradictory roles, such as survival and cell death. Autophagy can serve as a tumor suppressor, as a partial reduction in autophagic capacity or defective autophagy (e.g., heterozygous knockdown BECN1 (+/-) in mice) provides an oncogenic stimulus, causing malignant transformation and spontaneous tumors. In addition, autophagy seems to function as a protective cell survival mechanism against environmental and cellular stress (e.g., nutrient deprivation, hypoxia and therapeutic stress) and causes resistance to antineoplastic therapies. Recent studies have demonstrated that the inhibition of autophagy in cancer cells may be therapeutically beneficial in some circumstances, as it can sensitize cancer cells to different therapies, including DNA-damaging agents, antihormone therapies (e.g., tamoxifen), and radiation therapy. This supports the hypothesis that inhibiting autophagy can negatively influence cancer cell survival and increase cell death when combined with anticancer agents, providing a therapeutic advantage against cancer. On the other hand, the induction of autophagy by the inhibition of anti-autophagic proteins, such as Bcl-2, PKCdelta, and tissue transglutaminase 2 (TG2), may lead to autophagic cell death in some apoptosis-resistant cancers (i.e., breast and pancreatic cancers), indicating that the induction of autophagy alone may also be used as a potential therapy. Overall, the data suggest that, depending on the cellular features, either the induction or the inhibition of autophagy can provide therapeutic benefits to patients and that the design and synthesis of the first-generation modulators of autophagy may provide the tools for proof of concept experiments and the impetus for translational studies that may ultimately lead to new therapeutic strategies in cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.

              Germ line mutations of the BRCA1 gene confer a high risk of breast cancer and ovarian cancer to female mutation carriers. The BRCA1 protein is involved in the regulation of DNA repair. How specific tumor-associated mutations affect the molecular function of BRCA1, however, awaits further elucidation. Cell lines that harbor BRCA1 gene mutations are invaluable tools for such functional studies. Up to now, the HCC1937 cell line was the only human breast cancer cell line with an identified BRCA1 mutation. In this study, we identified three other BRCA1 mutants from among 41 human breast cancer cell lines by sequencing of the complete coding sequence of BRCA1. Cell line MDA-MB-436 had the 5396 + 1G>A mutation in the splice donor site of exon 20. Cell line SUM149PT carried the 2288delT mutation and SUM1315MO2 carried the 185delAG mutation. All three mutations were accompanied by loss of the other BRCA1 allele. The 185delAG and 5396 + 1G>A mutations are both classified as pathogenic mutations. In contrast with wild-type cell lines, none of the BRCA1 mutants expressed nuclear BRCA1 proteins as detected with Ab-1 and Ab-2 anti-BRCA1 monoclonal antibodies. These three new human BRCA1 mutant cell lines thus seem to be representative breast cancer models that could aid in further unraveling of the function of BRCA1.
                Bookmark

                Author and article information

                Journal
                Int J Oncol
                Int. J. Oncol
                IJO
                International Journal of Oncology
                D.A. Spandidos
                1019-6439
                1791-2423
                July 2015
                12 May 2015
                : 47
                : 1
                : 262-268
                Affiliations
                [1 ]Department of Breast Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
                [2 ]Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
                Author notes
                Correspondence to: Dr Bulent Ozpolat, Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 422, Houston, TX 77030, USA, E-mail: bozpolat@ 123456mdanderson.org
                Article
                ijo-47-01-0262
                10.3892/ijo.2015.3003
                6904111
                25975349
                aa0d30e7-d2e6-4c75-bfe3-66c8a7580388
                Copyright © 2015, Spandidos Publications

                This is an open-access article licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. The article may be redistributed, reproduced, and reused for non-commercial purposes, provided the original source is properly cited.

                History
                : 04 March 2015
                : 14 April 2015
                Categories
                Articles

                parp inhibitors,azd2281,brca mutation,allelic loss,breast cancer,autophagy,mitophagy,therapy

                Comments

                Comment on this article