11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      C-Functionalized, Air- and Water-Stable 9,10-Dihydro-9,10-diboraanthracenes: Efficient Blue to Red Emitting Luminophores

      , , , ,
      Journal of the American Chemical Society
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          9,10-Dihydro-9,10-diboraanthracene (DBA) provides a versatile scaffold for the development of boron-doped organic luminophores. Symmetrically C-halogenated DBAs are obtained through the condensation of 4-bromo-1,2-bis(trimethylsilyl)benzene or 4,5-dichloro-1,2-bis(trimethylsilyl)benzene with BBr3 in hexane. Unsymmetrically C-halogenated DBAs are formed via an electrophilic solvent activation reaction if the synthesis is carried out in o-xylene. Mechanistic insight has been achieved by in situ NMR spectroscopy, which revealed C-halogenated 1,2-bis(dibromoboryl)benzenes to be the key intermediates. Treatment of the primary 9,10-dibromo-DBAs with MesMgBr yields air- and water-stable C-halogenated 9,10-dimesityl-DBAs (2-Br-6,7-Me2-DBA(Mes)2; 2,6-Br2-DBA(Mes)2; 2,3-Cl2-6,7-Me2-DBA(Mes)2; 2,3,6,7-Cl4-DBA(Mes)2). Subsequent Stille-type C-C-coupling reactions give access to corresponding phenyl, 2-thienyl, and p-N,N-diphenylaminophenyl derivatives, which act as highly emissive donor-acceptor dyads or donor-acceptor-donor triads both in solution and in the solid state. 2-Thienyl was chosen as a model substituent to show that already a variation of the number and/or the positional distribution of the donor groups suffices to tune the emission wavelength of the resulting benchtop stable compounds from 469 nm (blue) to 540 nm (green). A further shift of the fluorescence maximum to 594 nm (red) can be achieved by switching from 2-thienyl to p-aminophenyl groups. A comparison of the optoelectronic properties of selected C-substituted DBA(Mes)2 derivatives with those of the isostructural anthracene analogues unveiled the following: (i) The DBA core is a much better electron acceptor. (ii) The emission colors of DBAs fall in the visible range of the spectrum (blue to orange), while anthracenes emit exclusively in the near-ultraviolet to blue wavelength regime. (iii) DBAs show significantly higher solid-state quantum yields.

          Related collections

          Author and article information

          Journal
          Journal of the American Chemical Society
          J. Am. Chem. Soc.
          American Chemical Society (ACS)
          0002-7863
          1520-5126
          August 14 2013
          August 14 2013
          : 135
          : 34
          : 12892-12907
          Article
          10.1021/ja406766e
          23899377
          aa0e9601-2a1a-4c57-bc1f-371b6b4e903d
          © 2013

          http://pubs.acs.org/page/policy/authorchoice_termsofuse.html

          History

          Comments

          Comment on this article