Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
51
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enhanced air pollution via aerosol-boundary layer feedback in China

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe air pollution episodes have been frequent in China during the recent years. While high emissions are the primary reason for increasing pollutant concentrations, the ultimate cause for the most severe pollution episodes has remained unclear. Here we show that a high concentration of particulate matter (PM) will enhance the stability of an urban boundary layer, which in turn decreases the boundary layer height and consequently cause further increases in PM concentrations. We estimate the strength of this positive feedback mechanism by combining a new theoretical framework with ambient observations. We show that the feedback remains moderate at fine PM concentrations lower than about 200 μg m −3, but that it becomes increasingly effective at higher PM loadings resulting from the combined effect of high surface PM emissions and massive secondary PM production within the boundary layer. Our analysis explains why air pollution episodes are particularly serious and severe in megacities and during the days when synoptic weather conditions stay constant.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Climate effects of black carbon aerosols in China and India.

          S Menon (2002)
          In recent decades, there has been a tendency toward increased summer floods in south China, increased drought in north China, and moderate cooling in China and India while most of the world has been warming. We used a global climate model to investigate possible aerosol contributions to these trends. We found precipitation and temperature changes in the model that were comparable to those observed if the aerosols included a large proportion of absorbing black carbon ("soot"), similar to observed amounts. Absorbing aerosols heat the air, alter regional atmospheric stability and vertical motions, and affect the large-scale circulation and hydrologic cycle with significant regional climate effects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Association of particulate air pollution with daily mortality: the China Air Pollution and Health Effects Study.

            China is one of the few countries with some of the highest particulate matter levels in the world. However, only a small number of particulate matter health studies have been conducted in China. The study objective was to examine the association of particulate matter with an aerodynamic diameter of less than 10 μm (PM(10)) with daily mortality in 16 Chinese cities between 1996 and 2008. Two-stage Bayesian hierarchical models were applied to obtain city-specific and national average estimates. Poisson regression models incorporating natural spline smoothing functions were used to adjust for long-term and seasonal trends of mortality, as well as other time-varying covariates. The averaged daily concentrations of PM(10) in the 16 Chinese cities ranged from 52 μg/m(3) to 156 μg/m(3). The 16-city combined analysis showed significant associations of PM(10) with mortality: A 10-μg/m(3) increase in 2-day moving-average PM(10) was associated with a 0.35% (95% posterior interval (PI): 0.18, 0.52) increase of total mortality, 0.44% (95% PI: 0.23, 0.64) increase of cardiovascular mortality, and 0.56% (95% PI: 0.31, 0.81) increase of respiratory mortality. Females, older people, and residents with low educational attainment appeared to be more vulnerable to PM(10) exposure. Conclusively, this largest epidemiologic study of particulate air pollution in China suggests that short-term exposure to PM(10) is associated with increased mortality risk.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The burden of air pollution on years of life lost in Beijing, China, 2004-08: retrospective regression analysis of daily deaths

              Objectives To better understand the burden of air pollution on deaths, we examined the effects of air pollutants on years of life lost (YLL) in Beijing, China. Design Retrospective regression analysis using daily time series. Setting 8 urban districts in Beijing, China. Participants 80 515 deaths (48 802 male, 31 713 female) recorded by the Beijing death classification system during 2004-08. Main outcome measures Associations between daily YLL and ambient air pollutants (particulate matter with aerodynamic diameter <2.5 µm (PM2.5), PM10, SO2, and NO2), after adjusting for long term trends, seasonality, day of the week, and weather conditions. We also examined mortality risk related to air pollutants. Results Mean concentrations of daily PM2.5, PM10, SO2 and NO2 were 105.1 μg/m3, 144.6 μg/m3, 48.6 μg/m3, and 64.2 μg/m3, respectively. All air pollutants had significant effects on years of life lost when we used single pollutant models. An interquartile range (IQR) increase in PM2.5, PM10, SO2, and NO2 was related to YLL increases of 15.8, 15.8, 16.2, and 15.1 years, respectively. The effects of air pollutants on YLL appeared acutely and lasted for two days (lag 0-1); these effects associated with an IQR increase in PM2.5 were greater in women than men (11.1 (95% confidence interval 4.7 to 17.5) v 4.7 (−2.9 to 12.3) YLL) and in people aged up to 65 years than those older than 65 years (12.0 (2.9 to 21) v 3.8 (−0.9 to 8.6) YLL). The mortality risk associated with an IQR increase in PM2.5 was greater for people older than 65 years (2.5% (95% confidence interval 0.6% to 4.5%) increase of mortality) than those aged up to 65 years (0.7% (−0.8% to 2.2%)). Conclusions YLL provides a complementary measure for examining the effect of air pollutants on mortality. Increased YLL are associated with increased air pollution. This study highlights the need to reduce air pollution in Beijing, China, to protect the health of the population.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                12 January 2016
                2016
                : 6
                : 18998
                Affiliations
                [1 ]Department of Physics, University of Helsinki , Finland
                [2 ]Joint International Research Laboratory of Atmospheric and Earth System Sciences & School of Atmospheric Sciences, Nanjing University , China
                [3 ]Finnish Meteorological Institute , Helsinki, Finland
                [4 ]University of Nizhny Novgorod, Nizhny Novgorod , Russia
                [5 ]Moscow State University , Moscow, Russia
                [6 ]Institute of Geography, Russian Academy of Sciences , Moscow, Russia
                Author notes
                Article
                srep18998
                10.1038/srep18998
                4709519
                26753788
                aa40c7be-d570-4640-8f78-2417810527a9
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 24 July 2015
                : 06 November 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article