19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Global population divergence and admixture of the brown rat (Rattus norvegicus)

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="d5265622e602">Native to China and Mongolia, the brown rat ( <i>Rattus norvegicus</i>) now enjoys a worldwide distribution. While black rats and the house mouse tracked the regional development of human agricultural settlements, brown rats did not appear in Europe until the 1500s, suggesting their range expansion was a response to relatively recent increases in global trade. We inferred the global phylogeography of brown rats using 32 k SNPs, and detected 13 evolutionary clusters within five expansion routes. One cluster arose following a southward expansion into Southeast Asia. Three additional clusters arose from two independent eastward expansions: one expansion from Russia to the Aleutian Archipelago, and a second to western North America. Westward expansion resulted in the colonization of Europe from which subsequent rapid colonization of Africa, the Americas and Australasia occurred, and multiple evolutionary clusters were detected. An astonishing degree of fine-grained clustering between and within sampling sites underscored the extent to which urban heterogeneity shaped genetic structure of commensal rodents. Surprisingly, few individuals were recent migrants, suggesting that recruitment into established populations is limited. Understanding the global population structure of <i>R. norvegicus</i> offers novel perspectives on the forces driving the spread of zoonotic disease, and aids in development of rat eradication programmes. </p>

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase.

          We present a statistical model for patterns of genetic variation in samples of unrelated individuals from natural populations. This model is based on the idea that, over short regions, haplotypes in a population tend to cluster into groups of similar haplotypes. To capture the fact that, because of recombination, this clustering tends to be local in nature, our model allows cluster memberships to change continuously along the chromosome according to a hidden Markov model. This approach is flexible, allowing for both "block-like" patterns of linkage disequilibrium (LD) and gradual decline in LD with distance. The resulting model is also fast and, as a result, is practicable for large data sets (e.g., thousands of individuals typed at hundreds of thousands of markers). We illustrate the utility of the model by applying it to dense single-nucleotide-polymorphism genotype data for the tasks of imputing missing genotypes and estimating haplotypic phase. For imputing missing genotypes, methods based on this model are as accurate or more accurate than existing methods. For haplotype estimation, the point estimates are slightly less accurate than those from the best existing methods (e.g., for unrelated Centre d'Etude du Polymorphisme Humain individuals from the HapMap project, switch error was 0.055 for our method vs. 0.051 for PHASE) but require a small fraction of the computational cost. In addition, we demonstrate that the model accurately reflects uncertainty in its estimates, in that probabilities computed using the model are approximately well calibrated. The methods described in this article are implemented in a software package, fastPHASE, which is available from the Stephens Lab Web site.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Environmental and Economic Costs of Nonindigenous Species in the United States

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rats, cities, people, and pathogens: a systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers.

              Urban Norway and black rats (Rattus norvegicus and Rattus rattus) are the source of a number of pathogens responsible for significant human morbidity and mortality in cities around the world. These pathogens include zoonotic bacteria (Leptospira interrogans, Yersina pestis, Rickettsia typhi, Bartonella spp., Streptobacillus moniliformis), viruses (Seoul hantavirus), and parasites (Angiostrongylus cantonensis). A more complete understanding of the ecology of these pathogens in people and rats is critical for determining the public health risks associated with urban rats and for developing strategies to monitor and mitigate those risks. Although the ecology of rat-associated zoonoses is complex, due to the multiple ways in which rats, people, pathogens, vectors, and the environment may interact, common determinants of human disease can still be identified. This review summarizes the ecology of zoonoses associated with urban rats with a view to identifying similarities, critical differences, and avenues for further study.
                Bookmark

                Author and article information

                Journal
                Proceedings of the Royal Society B: Biological Sciences
                Proc. R. Soc. B
                The Royal Society
                0962-8452
                1471-2954
                October 19 2016
                October 19 2016
                : 283
                : 1841
                : 20161762
                Article
                10.1098/rspb.2016.1762
                5095384
                27798305
                aa61d224-f92e-4a8e-a529-7fb8d8485446
                © 2016

                http://royalsocietypublishing.org/licence

                History

                Comments

                Comment on this article