11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Listening to pulses of radiation: design of a submersible thermoacoustic sensor

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nowadays, various collaborations are creating immense machines to try to track and understand the origin of high-energy cosmic particles (e.g., IceCube, ANTARES, Baikal-GVD, P-ONE). The detection mechanism of these sophisticated experiments relies mainly on an optical signal generated by the passage of charged particles on a dielectric medium (Čerenkov radiation). Unfortunately, the dim light produced by passing particles cannot travel too far until it fades away, creating the necessity to instrument large areas with short spacing between sensors. The range limitation of the optical technique has created a fertile ground for experimenting on the detection of acoustic signals generated by radiation—thermoacoustics. Despite the increased use of the thermoacoustic technique, the instrumentation to capture the faint acoustic signals is still scarce. Therefore, this work has the objective to contribute with information on the critical stages of an affordable submersible thermoacoustic sensor: namely the piezoelectric transducer and the amplifying electronics. We tested the sensor in a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$170\,{\textit{l}}$$\end{document} non-anechoic tank using an infrared ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda =1064\,\hbox {nm}$$\end{document} ) Q-switched Nd:YAG laser as a pulsed energy source to create the characteristic signals of the thermoacoustic phenomena. In accordance with the thermoacoustic model, a polarity inversion of the pressure signal was observed when transiting from temperatures below the point of maximum density of water to temperatures above it. Also, the amplitude of the acoustic signal displayed a linear relationship with pulse energies up to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(51.1 \pm 1.7)\,\hbox {mJ}$$\end{document} ( \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^2 \sim 0.98$$\end{document} ). Despite the use of cost-effective parts and simple construction methods, the proposed sensor design is a viable instrument for experimental thermoacoustic investigations on high-energy particles.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Optical properties of the clearest natural waters (200-800 nm).

          A new UV submersible spectroradiometer has been employed to determine the diffuse attenuation coefficient for irradiance in the clearest natural waters [K(w)(lambda)] with emphasis on the spectral region from 300 to 400 nm. K(w)(lambda) can be related to the inherent optical properties of pure water, in particular the total absorption coefficient a(w)(lambda) and the molecular scattering coefficient b(m)(lambda), by means of equations derived from radiative transfer theory. We present an analysis showing that limiting values of K(w)(lambda) can be estimated from a(w)(lambda) and vice versa. Published a(w)(lambda) data, which show discrepancies much larger than their estimated accuracies, are briefly reviewed and then compared, via our analysis, with K(w)(lambda) data (our own new and previously published data as well as relevant data of others). This comparative analysis and new data allow a consistent and accurate set of optical properties for the clearest natural waters and for pure fresh water and saltwater to be estimated from 300 to 800 nm.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Thermal Agitation of Electricity in Conductors

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Applications of photoacoustic sensing techniques

                Bookmark

                Author and article information

                Contributors
                rafabarmak@gmail.com
                geraldo@cbpf.br
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                24 July 2020
                24 July 2020
                2020
                : 10
                : 12433
                Affiliations
                ISNI 0000 0004 0643 8134, GRID grid.418228.5, Brazilian Center for Research in Physics (CBPF), COMAN, ; Rio de Janeiro, 22290-180 Brazil
                Article
                68954
                10.1038/s41598-020-68954-8
                7382503
                aadee195-318f-4cdd-97c0-96f0cdfbb16c
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 April 2020
                : 6 July 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                physics,applied physics,astronomy and astrophysics,particle physics,techniques and instrumentation

                Comments

                Comment on this article