35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Instant visual detection of picogram levels of trinitrotoluene by using luminescent metal-organic framework gel-coated filter paper.

      Chemistry (Weinheim an Der Bergstrasse, Germany)
      Wiley
      explosives, gels, metal-organic frameworks, sensors, supramolecular chemistry

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is an ongoing need for explosive detection strategies to uncover threats to human security including illegal transport and terrorist activities. The widespread military use of the explosive trinitrotoluene (TNT) for landmines poses another particular threat to human health in the form of contamination of the surrounding environment and groundwater. The detection of explosives, particularly at low picogram levels, by using a molecular sensor is seen as an important challenge. Herein, we report on the use of a fluorescent metal-organic framework hydrogel that exhibits a higher detection capability for TNT in the gel state compared with that in the solution state. A portable sensor prepared from filter paper coated by the hydrogel was able to detect TNT at the picogram level with a detection limit of 1.82 ppt (parts per trillon). Our results present a simple and new means to provide selective detection of TNT on a surface or in aqueous solution, as afforded by the unique molecular packing through the metal-organic framework structure in the gel formation and the associated photophysical properties. Furthermore, the rheological properties of the MOF-based gel were similar to those of a typical hydrogel.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          Chemical sensors based on amplifying fluorescent conjugated polymers.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Enhanced emission and its switching in fluorescent organic nanoparticles.

            A new class of organic nanoparticles (CN-MBE nanoparticles) with a mean diameter of ca. 30-40 nm, which exhibit a strongly enhanced fluorescence emission, were prepared by a simple reprecipitation method. CN-MBE (1-cyano-trans-1,2-bis-(4'-methylbiphenyl)ethylene) is very weakly fluorescent in solution, but the intensity is increased by almost 700 times in the nanoparticles. Enhanced emission in CN-MBE nanoparticles is attributed to the synergetic effect of intramolecular planarization and J-type aggregate formation (restricted excimer formation) in nanopaticles. On/off fluorescence switching for organic vapor was demonstrated with CN-MBE nanoparticles.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A Luminescent Microporous Metal-Organic Framework for the Fast and Reversible Detection of High Explosives

              Sensors and sensitivity: A highly luminescent microporous metal-organic framework, [Zn(2)(bpdc)(2)(bpee)] (bpdc = 4,4'-biphenyldicarboxylate; bpee = 1,2-bipyridylethene), is capable of very fast and reversible detection of the vapors of the nitroaromatic explosive 2,4-dinitrotoluene and the plastic explosive taggant 2,3-dimethyl-2,3-dinitrobutane, through redox fluorescence quenching with unprecedented sensitivity (see spectra).
                Bookmark

                Author and article information

                Journal
                24203392
                10.1002/chem.201301507

                explosives,gels,metal-organic frameworks,sensors,supramolecular chemistry

                Comments

                Comment on this article