16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dental plaque-inspired versatile nanosystem for caries prevention and tooth restoration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dental caries is one of the most prevalent human diseases resulting from tooth demineralization caused by acid production of bacteria plaque. It remains challenges for current practice to specifically identify, intervene and interrupt the development of caries while restoring defects. In this study, inspired by natural dental plaque, a stimuli-responsive multidrug delivery system (PMs@NaF-SAP) has been developed to prevent tooth decay and promote enamel restoration. Classic spherical core-shell structures of micelles dual-loaded with antibacterial and restorative agents are self-assembled into bacteria-responsive multidrug delivery system based on the pH-cleavable boronate ester bond, followed by conjugation with salivary-acquired peptide (SAP) to endow the nanoparticle with strong adhesion to tooth enamel. The constructed PMs@NaF-SAP specifically adheres to tooth, identifies cariogenic conditions and intelligently releases drugs at acidic pH, thereby providing antibacterial adhesion and cariogenic biofilm resistance, and restoring the microarchitecture and mechanical properties of demineralized teeth. Topical treatment with PMs@NaF-SAP effectively diminishes the onset and severity of caries without impacting oral microbiota diversity or surrounding mucosal tissues. These findings demonstrate this novel nanotherapy has potential as a promising biomedical application for caries prevention and tooth defect restoration while resisting biofilm-associated diseases in a controlled manner activated by pathological bacteria.

          Graphical abstract

          Highlights

          • Nanomaterials can adhere to tooth and target acidic biofilms specifically.

          • Application of caries prevention and tooth defect restoration.

          • Guidance for the innovation of the existing post-defect restoration strategies.

          • The multidrug delivery system exerts antibacterial and restorative abilities on demand.

          • Bacteria-responsive system resists biofilm-associated diseases in a controlled manner.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          UPARSE: highly accurate OTU sequences from microbial amplicon reads.

          Amplified marker-gene sequences can be used to understand microbial community structure, but they suffer from a high level of sequencing and amplification artifacts. The UPARSE pipeline reports operational taxonomic unit (OTU) sequences with ≤1% incorrect bases in artificial microbial community tests, compared with >3% incorrect bases commonly reported by other methods. The improved accuracy results in far fewer OTUs, consistently closer to the expected number of species in a community.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.

            mothur aims to be a comprehensive software package that allows users to use a single piece of software to analyze community sequence data. It builds upon previous tools to provide a flexible and powerful software package for analyzing sequencing data. As a case study, we used mothur to trim, screen, and align sequences; calculate distances; assign sequences to operational taxonomic units; and describe the alpha and beta diversity of eight marine samples previously characterized by pyrosequencing of 16S rRNA gene fragments. This analysis of more than 222,000 sequences was completed in less than 2 h with a laptop computer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015

              Background Non-fatal outcomes of disease and injury increasingly detract from the ability of the world's population to live in full health, a trend largely attributable to an epidemiological transition in many countries from causes affecting children, to non-communicable diseases (NCDs) more common in adults. For the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015), we estimated the incidence, prevalence, and years lived with disability for diseases and injuries at the global, regional, and national scale over the period of 1990 to 2015. Methods We estimated incidence and prevalence by age, sex, cause, year, and geography with a wide range of updated and standardised analytical procedures. Improvements from GBD 2013 included the addition of new data sources, updates to literature reviews for 85 causes, and the identification and inclusion of additional studies published up to November, 2015, to expand the database used for estimation of non-fatal outcomes to 60 900 unique data sources. Prevalence and incidence by cause and sequelae were determined with DisMod-MR 2.1, an improved version of the DisMod-MR Bayesian meta-regression tool first developed for GBD 2010 and GBD 2013. For some causes, we used alternative modelling strategies where the complexity of the disease was not suited to DisMod-MR 2.1 or where incidence and prevalence needed to be determined from other data. For GBD 2015 we created a summary indicator that combines measures of income per capita, educational attainment, and fertility (the Socio-demographic Index [SDI]) and used it to compare observed patterns of health loss to the expected pattern for countries or locations with similar SDI scores. Findings We generated 9·3 billion estimates from the various combinations of prevalence, incidence, and YLDs for causes, sequelae, and impairments by age, sex, geography, and year. In 2015, two causes had acute incidences in excess of 1 billion: upper respiratory infections (17·2 billion, 95% uncertainty interval [UI] 15·4–19·2 billion) and diarrhoeal diseases (2·39 billion, 2·30–2·50 billion). Eight causes of chronic disease and injury each affected more than 10% of the world's population in 2015: permanent caries, tension-type headache, iron-deficiency anaemia, age-related and other hearing loss, migraine, genital herpes, refraction and accommodation disorders, and ascariasis. The impairment that affected the greatest number of people in 2015 was anaemia, with 2·36 billion (2·35–2·37 billion) individuals affected. The second and third leading impairments by number of individuals affected were hearing loss and vision loss, respectively. Between 2005 and 2015, there was little change in the leading causes of years lived with disability (YLDs) on a global basis. NCDs accounted for 18 of the leading 20 causes of age-standardised YLDs on a global scale. Where rates were decreasing, the rate of decrease for YLDs was slower than that of years of life lost (YLLs) for nearly every cause included in our analysis. For low SDI geographies, Group 1 causes typically accounted for 20–30% of total disability, largely attributable to nutritional deficiencies, malaria, neglected tropical diseases, HIV/AIDS, and tuberculosis. Lower back and neck pain was the leading global cause of disability in 2015 in most countries. The leading cause was sense organ disorders in 22 countries in Asia and Africa and one in central Latin America; diabetes in four countries in Oceania; HIV/AIDS in three southern sub-Saharan African countries; collective violence and legal intervention in two north African and Middle Eastern countries; iron-deficiency anaemia in Somalia and Venezuela; depression in Uganda; onchoceriasis in Liberia; and other neglected tropical diseases in the Democratic Republic of the Congo. Interpretation Ageing of the world's population is increasing the number of people living with sequelae of diseases and injuries. Shifts in the epidemiological profile driven by socioeconomic change also contribute to the continued increase in years lived with disability (YLDs) as well as the rate of increase in YLDs. Despite limitations imposed by gaps in data availability and the variable quality of the data available, the standardised and comprehensive approach of the GBD study provides opportunities to examine broad trends, compare those trends between countries or subnational geographies, benchmark against locations at similar stages of development, and gauge the strength or weakness of the estimates available. Funding Bill & Melinda Gates Foundation.
                Bookmark

                Author and article information

                Contributors
                Journal
                Bioact Mater
                Bioact Mater
                Bioactive Materials
                KeAi Publishing
                2452-199X
                21 June 2022
                February 2023
                21 June 2022
                : 20
                : 418-433
                Affiliations
                [a ]The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory for Oral Biomedical Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
                [b ]Division of Endodontics, Faculty of Dentistry, The University of British Columbia, Canada
                Author notes
                []Corresponding author. School and Hospital of Stomatology, Wuhan University, #237, Luoyu Road, Hongshan District, Wuhan, 430079, China. guojingmei@ 123456whu.edu.cn
                [∗∗ ]Corresponding author. School and Hospital of Stomatology, Wuhan University, #237, Luoyu Road, Hongshan District, Wuhan, 430079, China. huangcui@ 123456whu.edu.cn
                Article
                S2452-199X(22)00276-6
                10.1016/j.bioactmat.2022.06.010
                9233191
                35784637
                ab610bd2-348a-435a-93a9-ede6f7edee37
                © 2022 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 29 April 2022
                : 7 June 2022
                : 15 June 2022
                Categories
                Article

                biofilms,dental caries,micelles,peptide,stimuli responsive polymers,tooth remineralization

                Comments

                Comment on this article