4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Search for Viral Infections in Cerebrospinal Fluid From Patients With Autoimmune Encephalitis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          It has been reported that virus-mediated brain tissue damage can lead to autoimmune encephalitis (AE) characterized by the presence of antibodies against neuronal surface antigens. In the study, we investigate the presence of viruses in cerebrospinal fluid (CSF) from patients with AE using reverse transcription polymerase chain reaction (RT-PCR)/PCR and shotgun metagenomics.

          Methods

          CSF samples collected from 200 patients with encephalitis were tested for the presence of antibodies against antiglutamate receptor (NMDAR), contactin-associated protein 2 (CASPR2), glutamate receptors (type AMPA1/2), leucine-rich glioma-inactivated protein 1 (LGI1), dipeptidyl aminopeptidase-like protein 6 (DPPX), and GABA B receptor, and those found positive were further analyzed with real-time RT-PCR/PCR for common viral neuroinfections and shotgun DNA- and RNA-based metagenomics.

          Results

          Autoantibodies against neuronal cells were detected in CSF from 8 individuals (4% of all encephalitis patients): 7 (3.5%) had anti-NMDAR and 1 (0.5%) had anti-GABA B. RT-PCR/PCR identified human herpes virus type 1 (HSV-1; 300 copies/mL) and the representative of Enterovirus genus (550 copies/mL) in 1 patient each. Torque teno virus (TTV) was found in another patient using metagenomic analysis, and its presence was confirmed by specific PCR.

          Conclusions

          We detected the presence of HSV, TTV, and Enterovirus genus in CSF samples from 3 out of 8 AE patients. These findings support the concept of viral involvement in the pathogenesis of this disease.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Trimmomatic: a flexible trimmer for Illumina sequence data

          Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic Contact: usadel@bio1.rwth-aachen.de Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            The Sequence Alignment/Map format and SAMtools

            Summary: The Sequence Alignment/Map (SAM) format is a generic alignment format for storing read alignments against reference sequences, supporting short and long reads (up to 128 Mbp) produced by different sequencing platforms. It is flexible in style, compact in size, efficient in random access and is the format in which alignments from the 1000 Genomes Project are released. SAMtools implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments. Availability: http://samtools.sourceforge.net Contact: rd@sanger.ac.uk
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fast gapped-read alignment with Bowtie 2.

              As the rate of sequencing increases, greater throughput is demanded from read aligners. The full-text minute index is often used to make alignment very fast and memory-efficient, but the approach is ill-suited to finding longer, gapped alignments. Bowtie 2 combines the strengths of the full-text minute index with the flexibility and speed of hardware-accelerated dynamic programming algorithms to achieve a combination of high speed, sensitivity and accuracy.
                Bookmark

                Author and article information

                Journal
                Open Forum Infect Dis
                Open Forum Infect Dis
                ofid
                Open Forum Infectious Diseases
                Oxford University Press (US )
                2328-8957
                November 2020
                07 October 2020
                07 October 2020
                : 7
                : 11
                : ofaa468
                Affiliations
                [1 ] Department of Immunopathology of Infectious and Parasitic Diseases, Medical University of Warsaw , Warsaw, Poland
                [2 ] Department of Medical Genetics, Medical University of Warsaw , Warsaw, Poland
                [3 ] Department of Microbiology, Medical University of Warsaw , Warsaw, Poland
                [4 ] Department of Adult Infectious Diseases, Medical University of Warsaw , Warsaw, Poland
                Author notes
                Correspondence: Karol Perlejewski, PhD, Street Pawińskiego 3c, 02-106, Warsaw ( kperlejewski@ 123456wum.edu.pl ).
                Article
                ofaa468
                10.1093/ofid/ofaa468
                7643957
                33209955
                ab6d09a3-462c-4fb6-97a7-643286a2a10a
                © The Author(s) 2020. Published by Oxford University Press on behalf of Infectious Diseases Society of America.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

                History
                : 07 May 2020
                : 28 September 2020
                : 30 September 2020
                : 05 November 2020
                Page count
                Pages: 6
                Funding
                Funded by: National Science Center, Poland;
                Award ID: 2017/25/B/NZ6/01463
                Funded by: Medical University of Warsaw, Poland;
                Award ID: 1M24/PM1/18
                Funded by: Research Development Foundation in the Hospital for Infectious Diseases;
                Categories
                Major Articles
                AcademicSubjects/MED00290

                autoimmune encephalitis,anti-nmdar,metagenomics,virus,ngs
                autoimmune encephalitis, anti-nmdar, metagenomics, virus, ngs

                Comments

                Comment on this article