23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanisms Underlying Latent Disease Risk Associated with Early-Life Arsenic Exposure: Current Research Trends and Scientific Gaps

      article-commentary

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Millions of individuals worldwide, particularly those living in rural and developing areas, are exposed to harmful levels of inorganic arsenic (iAs) in their drinking water. Inorganic As exposure during key developmental periods is associated with a variety of adverse health effects, including those that are evident in adulthood. There is considerable interest in identifying the molecular mechanisms that relate early-life iAs exposure to the development of these latent diseases, particularly in relationship to cancer.

          Objectives

          This work summarizes research on the molecular mechanisms that underlie the increased risk of cancer development in adulthood that is associated with early-life iAs exposure.

          Discussion

          Epigenetic reprogramming that imparts functional changes in gene expression, the development of cancer stem cells, and immunomodulation are plausible underlying mechanisms by which early-life iAs exposure elicits latent carcinogenic effects.

          Conclusions

          Evidence is mounting that relates early-life iAs exposure and cancer development later in life. Future research should include animal studies that address mechanistic hypotheses and studies of human populations that integrate early-life exposure, molecular alterations, and latent disease outcomes.

          Citation

          Bailey KA, Smith AH, Tokar EJ, Graziano JH, Kim KW, Navasumrit P, Ruchirawat M, Thiantanawat A, Suk WA, Fry RC. 2016. Mechanisms underlying latent disease risk associated with early-life arsenic exposure: current research trends and scientific gaps. Environ Health Perspect 124:170–175;  http://dx.doi.org/10.1289/ehp.1409360

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation and pregnancy.

          Inflammation is a process by which tissues respond to various insults. It is characterized by upregulation of chemokines, cytokines, and pattern recognition receptors that sense microbes and tissue breakdown products. During pregnancy, the balance of Th1 (cell-mediated immunity) and Th2 (humoral immunity) cytokines is characterized by an initial prevalence of Th2 cytokines, followed by a progressive shift toward Th1 predominance late in gestation, that when is abnormal, may initiate and intensify the cascade of inflammatory cytokine production involved in adverse pregnancy outcomes. Maternal and placental hormones may affect the inflammatory pathway. Hypoxia and the innate immune response are 2 adaptive mechanisms by which organisms respond to perturbation in organ function, playing a major role in spontaneous abortion, intrauterine growth restriction, preeclampsia, and preterm delivery. The interaction between tissue remodeling factors, like matrix metalloproteinases, and vasoactive/hemostatic factors, like prostaglandin and coagulation factors, mediates this adaptive response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Water Arsenic Exposure and Children’s Intellectual Function in Araihazar, Bangladesh

            Exposure to arsenic has long been known to have neurologic consequences in adults, but to date there are no well-controlled studies in children. We report results of a cross-sectional investigation of intellectual function in 201 children 10 years of age whose parents participate in our ongoing prospective cohort study examining health effects of As exposure in 12,000 residents of Araihazar, Bangladesh. Water As and manganese concentrations of tube wells at each child’s home were obtained by surveying all wells in the study region. Children and mothers came to our field clinic, where children received a medical examination in which weight, height, and head circumference were measured. Children’s intellectual function on tests drawn from the Wechsler Intelligence Scale for Children, version III, was assessed by summing weighted items across domains to create Verbal, Performance, and Full-Scale raw scores. Children provided urine specimens for measuring urinary As and creatinine and were asked to provide blood samples for measuring blood lead and hemoglobin concentrations. Exposure to As from drinking water was associated with reduced intellectual function after adjustment for sociodemographic covariates and water Mn. Water As was associated with reduced intellectual function, in a dose–response manner, such that children with water As levels > 50 μg/L achieved significantly lower Performance and Full-Scale scores than did children with water As levels < 5.5 μg/L. The association was generally stronger for well-water As than for urinary As.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Differential DNA Methylation in Umbilical Cord Blood of Infants Exposed to Low Levels of Arsenic in Utero

              Background: There is increasing epidemiologic evidence that arsenic exposure in utero, even at low levels found throughout much of the world, is associated with adverse reproductive outcomes and may contribute to long-term health effects. Animal models, in vitro studies, and human cancer data suggest that arsenic may induce epigenetic alterations, specifically by altering patterns of DNA methylation. Objectives: In this study we aimed to identify differences in DNA methylation in cord blood samples of infants with in utero, low-level arsenic exposure. Methods: DNA methylation of cord-blood derived DNA from 134 infants involved in a prospective birth cohort in New Hampshire was profiled using the Illumina Infinium Methylation450K array. In utero arsenic exposure was estimated using maternal urine samples collected at 24–28 weeks gestation. We used a novel cell mixture deconvolution methodology for examining the association between inferred white blood cell mixtures in infant cord blood and in utero arsenic exposure; we also examined the association between methylation at individual CpG loci and arsenic exposure levels. Results: We found an association between urinary inorganic arsenic concentration and the estimated proportion of CD8+ T lymphocytes (1.18; 95% CI: 0.12, 2.23). Among the top 100 CpG loci with the lowest p-values based on their association with urinary arsenic levels, there was a statistically significant enrichment of these loci in CpG islands (p = 0.009). Of those in CpG islands (n = 44), most (75%) exhibited higher methylation levels in the highest exposed group compared with the lowest exposed group. Also, several CpG loci exhibited a linear dose-dependent relationship between methylation and arsenic exposure. Conclusions: Our findings suggest that in utero exposure to low levels of arsenic may affect the epigenome. Long-term follow-up is planned to determine whether the observed changes are associated with health outcomes.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                Environ. Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                26 June 2015
                February 2016
                : 124
                : 2
                : 170-175
                Affiliations
                [1 ]Department of Environmental Sciences and Engineering, UNC Gillings School of Global Public Health, Chapel Hill, North Carolina, USA
                [2 ]Arsenic Health Effects Research Program, School of Public Health, University of California, Berkeley, Berkeley, California, USA
                [3 ]National Toxicology Program, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
                [4 ]Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
                [5 ]School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
                [6 ]Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, Thailand
                [7 ]Superfund Research Program, NIEHS, NIH, DHHS, Research Triangle Park, North Carolina, USA
                Author notes
                [* ]Address correspondence to R.C. Fry, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, 135 Dauer Dr., CB 7431, University of North Carolina, Chapel Hill, NC 27599-7295 USA. Telephone: (919) 843-6864. E-mail: rfry@ 123456unc.edu
                Article
                ehp.1409360
                10.1289/ehp.1409360
                4749078
                26115410
                aba1d8b4-cbfc-466e-9014-8f67e6ba789d

                Publication of EHP lies in the public domain and is therefore without copyright. All text from EHP may be reprinted freely. Use of materials published in EHP should be acknowledged (for example, “Reproduced with permission from Environmental Health Perspectives”); pertinent reference information should be provided for the article from which the material was reproduced. Articles from EHP, especially the News section, may contain photographs or illustrations copyrighted by other commercial organizations or individuals that may not be used without obtaining prior approval from the holder of the copyright.

                History
                : 17 October 2014
                : 23 June 2015
                : 26 June 2015
                : 01 February 2016
                Categories
                Commentary

                Public health
                Public health

                Comments

                Comment on this article