10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      An overview on microalgae as renewable resources for meeting sustainable development goals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references161

          • Record: found
          • Abstract: found
          • Article: not found

          Biodiesel from microalgae.

          Continued use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies and the contribution of these fuels to the accumulation of carbon dioxide in the environment. Renewable, carbon neutral, transport fuels are necessary for environmental and economic sustainability. Biodiesel derived from oil crops is a potential renewable and carbon neutral alternative to petroleum fuels. Unfortunately, biodiesel from oil crops, waste cooking oil and animal fat cannot realistically satisfy even a small fraction of the existing demand for transport fuels. As demonstrated here, microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels. Like plants, microalgae use sunlight to produce oils but they do so more efficiently than crop plants. Oil productivity of many microalgae greatly exceeds the oil productivity of the best producing oil crops. Approaches for making microalgal biodiesel economically competitive with petrodiesel are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biodiesel from microalgae beats bioethanol.

            Renewable biofuels are needed to displace petroleum-derived transport fuels, which contribute to global warming and are of limited availability. Biodiesel and bioethanol are the two potential renewable fuels that have attracted the most attention. As demonstrated here, biodiesel and bioethanol produced from agricultural crops using existing methods cannot sustainably replace fossil-based transport fuels, but there is an alternative. Biodiesel from microalgae seems to be the only renewable biofuel that has the potential to completely displace petroleum-derived transport fuels without adversely affecting supply of food and other crop products. Most productive oil crops, such as oil palm, do not come close to microalgae in being able to sustainably provide the necessary amounts of biodiesel. Similarly, bioethanol from sugarcane is no match for microalgal biodiesel.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Commercial potential for Haematococcus microalgae as a natural source of astaxanthin.

              As a result of high production costs, commercial products from microalgae must command high prices. Astaxanthin produced by Haematococcus is a product that has become a commercial reality through novel and advanced technology. Cultivation methods have been developed to produce Haematococcus containing 1.5-3.0% astaxanthin by dry weight, with potential applications as a pigment source in aquaculture, poultry feeds and in the worldwide nutraceutical market.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of Environmental Management
                Journal of Environmental Management
                Elsevier BV
                03014797
                October 2022
                October 2022
                : 320
                : 115897
                Article
                10.1016/j.jenvman.2022.115897
                35947909
                abbc5955-36ff-40e6-b99a-04ed318f329a
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article