9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The lysosomal transporter MFSD1 is essential for liver homeostasis and critically depends on its accessory subunit GLMP

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Lysosomes are major sites for intracellular, acidic hydrolase-mediated proteolysis and cellular degradation. The export of low-molecular-weight catabolic end-products is facilitated by polytopic transmembrane proteins mediating secondary active or passive transport. A number of these lysosomal transporters, however, remain enigmatic. We present a detailed analysis of MFSD1, a hitherto uncharacterized lysosomal family member of the major facilitator superfamily. MFSD1 is not N-glycosylated. It contains a dileucine-based sorting motif needed for its transport to lysosomes. Mfsd1 knockout mice develop splenomegaly and severe liver disease. Proteomics of isolated lysosomes from Mfsd1 knockout mice revealed GLMP as a critical accessory subunit for MFSD1. MFSD1 and GLMP physically interact. GLMP is essential for the maintenance of normal levels of MFSD1 in lysosomes and vice versa. Glmp knockout mice mimic the phenotype of Mfsd1 knockout mice. Our data reveal a tightly linked MFSD1/GLMP lysosomal membrane protein transporter complex.

          eLife digest

          Lysosomes are specialized, enclosed compartments within cells with harsh chemical conditions where enzymes break down large molecules into smaller component parts. The products of these reactions are then transported out of the lysosome by transporter proteins so that they can be used to build new molecules that the cell needs.

          Despite their importance, only a few lysosomal transporters have been thoroughly studied. A protein called MFSD1 had previously been identified as a potential lysosomal transporter, but its precise role has not been described.

          Now, Massa López et al. have characterized the role of MFSD1, by genetically modifying mice so they could no longer make the transporter. These mice developed severe liver damage. In particular, a specific type of cell that is important for lining blood vessels in the liver, seemed to be lost in these mice. Older MFSD1 deficient mice also had more tumors in their livers compared to normal mice.

          Massa López et al. next examined what happened to other lysosomal proteins in the MFSD1 deficient mice, and found that these mice had strikingly low levels of a protein called GLMP. To better understand the relationship between GLMP and MFSD1, another strain of genetically modified mice was analyzed, this time missing GLMP. Mice without GLMP were found to have very similar liver problems to those observed in the mice lacking MFSD1. Moreover, the GLMP deficient mice had low levels of the MFSD1 protein.

          Further experiments demonstrated that MFSD1 and GLMP physically interact with each other: GLMP seemed to protect MFSD1 from being degraded in the harsh internal environment of the lysosome. Thus both GLMP and MFSD1 were needed to form a stable lysosomal transporter.

          Characterizing MFSD1 is important for scientists attempting to understand how the lysosomal membrane and transporters work. Moreover, these findings may shed light on how defects in lysosomal transporters contribute to metabolic disease.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Major facilitator superfamily.

          The major facilitator superfamily (MFS) is one of the two largest families of membrane transporters found on Earth. It is present ubiquitously in bacteria, archaea, and eukarya and includes members that can function by solute uniport, solute/cation symport, solute/cation antiport and/or solute/solute antiport with inwardly and/or outwardly directed polarity. All homologous MFS protein sequences in the public databases as of January 1997 were identified on the basis of sequence similarity and shown to be homologous. Phylogenetic analyses revealed the occurrence of 17 distinct families within the MFS, each of which generally transports a single class of compounds. Compounds transported by MFS permeases include simple sugars, oligosaccharides, inositols, drugs, amino acids, nucleosides, organophosphate esters, Krebs cycle metabolites, and a large variety of organic and inorganic anions and cations. Protein members of some MFS families are found exclusively in bacteria or in eukaryotes, but others are found in bacteria, archaea, and eukaryotes. All permeases of the MFS possess either 12 or 14 putative or established transmembrane alpha-helical spanners, and evidence is presented substantiating the proposal that an internal tandem gene duplication event gave rise to a primordial MFS protein prior to divergence of the family members. All 17 families are shown to exhibit the common feature of a well-conserved motif present between transmembrane spanners 2 and 3. The analyses reported serve to characterize one of the largest and most diverse families of transport proteins found in living organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The monocarboxylate transporter family--Structure and functional characterization.

            Monocarboxylate transporters (MCTs) catalyze the proton-linked transport of monocarboxylates such as L-lactate, pyruvate, and the ketone bodies across the plasma membrane. There are four isoforms, MCTs 1-4, which are known to perform this function in mammals, each with distinct substrate and inhibitor affinities. They are part of the larger SLC16 family of solute carriers, also known as the MCT family, which has 14 members in total, all sharing conserved sequence motifs. The family includes a high-affinity thyroid hormone transporter (MCT8), an aromatic amino acid transporter (T-type amino acid transporter 1/MCT10), and eight orphan members yet to be characterized. MCTs were predicted to have 12 transmembrane helices (TMs) with intracellular C- and N-termini and a large intracellular loop between TMs 6 and 7, and this was confirmed by labeling studies and proteolytic digestion. Site-directed mutagenesis has identified key residues required for catalysis and inhibitor binding and enabled the development of a molecular model of MCT1 in both inward and outward facing conformations. This suggests a likely mechanism for the translocation cycle. Although MCT family members are not themselves glycosylated, MCTs1-4 require association with a glycosylated ancillary protein, either basigin or embigin, for their correct translocation to the plasma membrane. These ancillary proteins have a single transmembrane domain and two to three extracellular immunoglobulin domains. They must remain closely associated with MCTs1-4 to maintain transporter activity. MCT1, MCT3, and MCT4 bind preferentially to basigin and MCT2 to embigin. The choice of binding partner does not affect substrate specificity or kinetics but can influence inhibitor specificity. Copyright © 2011 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification.

              P. Thomas (2003)
              The PANTHER database was designed for high-throughput analysis of protein sequences. One of the key features is a simplified ontology of protein function, which allows browsing of the database by biological functions. Biologist curators have associated the ontology terms with groups of protein sequences rather than individual sequences. Statistical models (Hidden Markov Models, or HMMs) are built from each of these groups. The advantage of this approach is that new sequences can be automatically classified as they become available. To ensure accurate functional classification, HMMs are constructed not only for families, but also for functionally distinct subfamilies. Multiple sequence alignments and phylogenetic trees, including curator-assigned information, are available for each family. The current version of the PANTHER database includes training sequences from all organisms in the GenBank non-redundant protein database, and the HMMs have been used to classify gene products across the entire genomes of human, and Drosophila melanogaster. The ontology terms and protein families and subfamilies, as well as Drosophila gene c;assifications, can be browsed and searched for free. Due to outstanding contractual obligations, access to human gene classifications and to protein family trees and multiple sequence alignments will temporarily require a nominal registration fee. PANTHER is publicly available on the web at http://panther.celera.com.
                Bookmark

                Author and article information

                Contributors
                Role: Senior Editor
                Role: Reviewing Editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                29 October 2019
                2019
                : 8
                : e50025
                Affiliations
                [1 ]deptInstitute of Biochemistry Christian-Albrechts-University Kiel KielGermany
                [2 ]deptInstitute for Biochemistry and Molecular Biology Rheinische-Friedrich-Wilhelms-University BonnGermany
                [3 ]deptInstitute of Clinical Chemistry and Laboratory Medicine University Medical Center Hamburg-Eppendorf HamburgGermany
                [4 ]deptCenter for Child and Adolescent Medicine, Department of Pediatrics I University of Heidelberg HeidelbergGermany
                [5 ]deptCenter for Molecular Neurobiology University Medical Center Hamburg-Eppendorf HamburgGermany
                [6 ]deptInstitute for Anatomy Christian-Albrechts-University Kiel KielGermany
                [7 ]deptDepartment of Bioscience University of Oslo OsloNorway
                Barcelona Institute of Science and Technology Spain
                Yale University School of Medicine United States
                Yale University School of Medicine United States
                Rutgers University United States
                Author notes
                [†]

                Biochemistry I, Department of Chemistry, Bielefeld University, Bielefeld, Germany.

                Author information
                http://orcid.org/0000-0002-7443-8967
                https://orcid.org/0000-0002-9699-9351
                Article
                50025
                10.7554/eLife.50025
                6819133
                31661432
                abdfdae5-67bc-4e89-9486-49ce166a7599
                © 2019, Massa López et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 08 July 2019
                : 26 September 2019
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: DA 1785-1
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100000780, European Commission;
                Award ID: 607446 Euroclast
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Biochemistry and Chemical Biology
                Cell Biology
                Custom metadata
                The so far uncharacterized lysosomal transporter protein MFSD1 is essential for liver homeostasis and needs the highly glycosylated GLMP protein as an accessory subunit for stability.

                Life sciences
                mfsd1,glmp,accessory subunit,lysosomal,major facilitator superfamily,transporter,mouse
                Life sciences
                mfsd1, glmp, accessory subunit, lysosomal, major facilitator superfamily, transporter, mouse

                Comments

                Comment on this article