11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Topological phases of shaken quantum Ising lattices

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The quantum compass model consists of a two-dimensional square spin lattice where the orientation of the spin-spin interactions depends on the spatial direction of the bonds. It has remarkable symmetry properties and the ground state shows topological degeneracy. The implementation of the quantum compass model in quantum simulation setups like ultracold atoms and trapped ions is far from trivial, since spin interactions in those sytems typically are independent of the spatial direction. Ising spin interactions, on the contrary, can be induced and controlled in atomic setups with state-of-the art experimental techniques. In this work, we show how the quantum compass model on a rectangular lattice can be simulated by the use of the photon-assisted tunneling induced by periodic drivings on a quantum Ising spin model. We describe a procedure to adiabatically prepare one of the doubly-degenerate ground states of this model by adiabatically ramping down a transverse magnetic field, with surprising differences depending on the parity of the lattice size. Exact diagonalizations confirm the validity of this approach for small lattices. Specific implementations of this scheme are presented with ultracold atoms in optical lattices in the Mott insulator regime, as well as with Rydberg atoms.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fault-tolerant quantum computation by anyons

          A. Kitaev (1997)
          A two-dimensional quantum system with anyonic excitations can be considered as a quantum computer. Unitary transformations can be performed by moving the excitations around each other. Measurements can be performed by joining excitations in pairs and observing the result of fusion. Such computation is fault-tolerant by its physical nature.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum Simulation of Antiferromagnetic Spin Chains in an Optical Lattice

            Understanding exotic forms of magnetism in quantum mechanical systems is a central goal of modern condensed matter physics, with implications from high temperature superconductors to spintronic devices. Simulating magnetic materials in the vicinity of a quantum phase transition is computationally intractable on classical computers due to the extreme complexity arising from quantum entanglement between the constituent magnetic spins. Here we employ a degenerate Bose gas confined in an optical lattice to simulate a chain of interacting quantum Ising spins as they undergo a phase transition. Strong spin interactions are achieved through a site-occupation to pseudo-spin mapping. As we vary an applied field, quantum fluctuations drive a phase transition from a paramagnetic phase into an antiferromagnetic phase. In the paramagnetic phase the interaction between the spins is overwhelmed by the applied field which aligns the spins. In the antiferromagnetic phase the interaction dominates and produces staggered magnetic ordering. Magnetic domain formation is observed through both in-situ site-resolved imaging and noise correlation measurements. By demonstrating a route to quantum magnetism in an optical lattice, this work should facilitate further investigations of magnetic models using ultracold atoms, improving our understanding of real magnetic materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms

              , , (2014)
              Sixty years ago, Karplus and Luttinger pointed out that quantum particles moving on a lattice could acquire an anomalous transverse velocity in response to a force, providing an explanation for the unusual Hall effect in ferromagnetic metals. A striking manifestation of this transverse transport was then revealed in the quantum Hall effect, where the plateaus depicted by the Hall conductivity were attributed to a topological invariant characterizing Bloch bands: the Chern number. Until now, topological transport associated with non-zero Chern numbers has only been revealed in electronic systems. Here we use studies of an atomic cloud's transverse deflection in response to an optical gradient to measure the Chern number of artificially generated Hofstadter bands. These topological bands are very flat and thus constitute good candidates for the realization of fractional Chern insulators. Combining these deflection measurements with the determination of the band populations, we obtain an experimental value for the Chern number of the lowest band \(\nu_{\mathrm{exp}} =0.99(5)\). This result, which constitutes the first Chern-number measurement in a non-electronic system, is facilitated by an all-optical artificial gauge field scheme, generating uniform flux in optical superlattices.
                Bookmark

                Author and article information

                Journal
                2015-08-12
                Article
                10.1088/1367-2630/18/2/023030
                1508.02944
                abf3945b-4274-4f18-a676-67bcbff73218

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                10 pages, 3 figures, comments are welcome
                cond-mat.quant-gas

                Quantum gases & Cold atoms
                Quantum gases & Cold atoms

                Comments

                Comment on this article