15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Postactivation Potentiation Following Acute Bouts of Plyometric versus Heavy-Resistance Exercise in Collegiate Soccer Players

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Postactivation potentiation is referred to as an acute and temporary enhancement of muscle performance resulting from previous muscle contraction. The purpose of this study was to compare the acute effect of plyometric exercise (PLY) and heavy-resistance exercise (RES) on the blood lactate level (BLa) and physical performance. Fourteen male collegiate soccer players were randomized to perform either RES or PLY first and then crossed over to perform the opposite intervention. PLY consisted of 40 jumps, whereas RES comprised ten single repetitions at 90% of one repetition maximum. BLa and physical performance (countermovement jump height and 20-m sprint) were measured before and at 1 and 10 min following the exercise. No significant difference was observed in the BLa for both exercises (PLY and RES). Relative to baseline, countermovement jump (CMJ) height was significantly better for the PLY group after 1 min ( P = 0.004) and after 10 min ( P = 0.001) compared to that of the RES group. The 20-m sprint time was significantly better for PLY at 10 min ( P = 0.003) compared to that of RES. The present study concluded that, compared to RES, PLY causes greater potentiation, which leads to improved physical performance. This trial is registered with NCT03150277.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Exercise-Induced Muscle Damage in Humans

          Exercise-induced muscle injury in humans frequently occurs after unaccustomed exercise, particularly if the exercise involves a large amount of eccentric (muscle lengthening) contractions. Direct measures of exercise-induced muscle damage include cellular and subcellular disturbances, particularly Z-line streaming. Several indirectly assessed markers of muscle damage after exercise include increases in T2 signal intensity via magnetic resonance imaging techniques, prolonged decreases in force production measured during both voluntary and electrically stimulated contractions (particularly at low stimulation frequencies), increases in inflammatory markers both within the injured muscle and in the blood, increased appearance of muscle proteins in the blood, and muscular soreness. Although the exact mechanisms to explain these changes have not been delineated, the initial injury is ascribed to mechanical disruption of the fiber, and subsequent damage is linked to inflammatory processes and to changes in excitation-contraction coupling within the muscle. Performance of one bout of eccentric exercise induces an adaptation such that the muscle is less vulnerable to a subsequent bout of eccentric exercise. Although several theories have been proposed to explain this "repeated bout effect," including altered motor unit recruitment, an increase in sarcomeres in series, a blunted inflammatory response, and a reduction in stress-susceptible fibers, there is no general agreement as to its cause. In addition, there is controversy concerning the presence of sex differences in the response of muscle to damage-inducing exercise. In contrast to the animal literature, which clearly shows that females experience less damage than males, research using human studies suggests that there is either no difference between men and women or that women are more prone to exercise-induced muscle damage than are men.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis.

            Although post-activation potentiation (PAP) has been extensively examined following the completion of a conditioning activity (CA), the precise effects on subsequent jump, sprint, throw, and upper-body ballistic performances and the factors modulating these effects have yet to be determined. Moreover, weaker and stronger individuals seem to exhibit different PAP responses; however, how they respond to the different components of a strength-power-potentiation complex remains to be elucidated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The validity and reliability of an iPhone app for measuring vertical jump performance.

              The purpose of this investigation was to analyse the concurrent validity and reliability of an iPhone app (called: My Jump) for measuring vertical jump performance. Twenty recreationally active healthy men (age: 22.1 ± 3.6 years) completed five maximal countermovement jumps, which were evaluated using a force platform (time in the air method) and a specially designed iPhone app. My jump was developed to calculate the jump height from flight time using the high-speed video recording facility on the iPhone 5 s. Jump heights of the 100 jumps measured, for both devices, were compared using the intraclass correlation coefficient, Pearson product moment correlation coefficient (r), Cronbach's alpha (α), coefficient of variation and Bland-Altman plots. There was almost perfect agreement between the force platform and My Jump for the countermovement jump height (intraclass correlation coefficient = 0.997, P < 0.001; Bland-Altman bias = 1.1 ± 0.5 cm, P < 0.001). In comparison with the force platform, My Jump showed good validity for the CMJ height (r = 0.995, P < 0.001). The results of the present study showed that CMJ height can be easily, accurately and reliably evaluated using a specially developed iPhone 5 s app.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2018
                7 February 2018
                : 2018
                : 3719039
                Affiliations
                1Centre for Physiotherapy and Rehabilitation Sciences, Jamia Millia Islamia, New Delhi, India
                2Dr. M. A. Ansari Health Centre, Jamia Millia Islamia, New Delhi, India
                3Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
                Author notes

                Academic Editor: Alberto Raggi

                Author information
                http://orcid.org/0000-0002-1675-7214
                http://orcid.org/0000-0002-5739-2557
                http://orcid.org/0000-0003-0490-2522
                http://orcid.org/0000-0002-3996-6035
                http://orcid.org/0000-0003-3187-8062
                http://orcid.org/0000-0002-1204-476X
                Article
                10.1155/2018/3719039
                5820625
                29568749
                ac74be40-828e-4159-b4ea-7cbe63746e4d
                Copyright © 2018 Sourabh Kumar Sharma et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 8 June 2017
                : 14 September 2017
                : 3 January 2018
                Funding
                Funded by: King Saud University
                Categories
                Research Article

                Comments

                Comment on this article