36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Exercise-Induced Muscle Damage in Humans :

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 120

          • Record: found
          • Abstract: not found
          • Article: not found

          Relation between size of neurons and their susceptibility to discharge.

           E HENNEMAN (1957)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Myofibrillar damage following intense eccentric exercise in man.

            Muscle soreness that has a delayed onset is a common feature among both athletes and untrained individuals who engage in unusual exercises. This study was designed to provide additional morphological data to assess the relevance and significance of our previous findings that the sore muscles contain fibers with disorganized myofibrillar material. Muscle biopsies were obtained from 12 males (mean age 25 +/- 7 years), who suffered from severe soreness in their thigh muscles 18--72 h following eccentric bicycle exercise. Their strength performance were tested in parallel. Knee extensor strength was decreased at all angular velocities soon after exercise but gradually increased over the subsequent days although slower at the fastest contractions. Disturbances of the cross-striated band pattern were constantly observed. They originated from the myofibrillar Z-band, which showed marked streaming, broadening and, at places, total disruption. The disturbances were found in every second to every third fiber up to 3 days after exercise and in one tenth of the fibers 6 days following the exercise. Type 2 fibers were predominantly affected. Thus, the eccentric exercise gives rise to muscles soreness and influences, on mechanical basis and selectively with regard to fiber type, the fine structure of the contractile apparatus.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running.

              1. This study was performed to test the hypothesis that inflammatory cytokines are produced in skeletal muscle in response to prolonged intense exercise. Muscle biopsies and blood samples were collected from runners before, immediately after, and 2 h after a marathon race. 2. The concentration of interleukin (IL)-6 protein in plasma increased from 1.5 +/- 0.7 to 94.4 +/- 12.6 pg ml-1 immediately post-exercise and to 22.1 +/- 3.8 pg ml-1 2 h post-exercise. IL-1 receptor antagonist (IL-1ra) protein in plasma increased from 123 +/- 23 to 2795 +/- 551 pg ml-1, and increased further to 4119 +/- 527 pg ml-1 2 h post-exercise. 3. The comparative polymerase chain reaction technique was used to evaluate mRNA for IL-6, IL-1ra, IL-1beta and tumour necrosis factor (TNF)-alpha in skeletal muscle and blood mononuclear cells (BMNC) (n = 8). Before exercise, mRNA for IL-6 could not be detected either in muscle or in BMNC, and was only detectable in muscle biopsies (5 out of 8) after exercise. Increased amounts of mRNA for IL-1ra were found in two muscle biopsies and five BMNC samples, and increased amounts of IL-1beta mRNA were found in one muscle and four BMNC samples after exercise. TNF-alpha mRNA was not detected in any samples. 4. This study suggests that exercise-induced destruction of muscle fibres in skeletal muscles may trigger local production of IL-6, which stimulates the production of IL-1ra from circulating BMNC.
                Bookmark

                Author and article information

                Journal
                American Journal of Physical Medicine & Rehabilitation
                American Journal of Physical Medicine & Rehabilitation
                Ovid Technologies (Wolters Kluwer Health)
                0894-9115
                2002
                November 2002
                : 81
                : Supplement
                : S52-S69
                Article
                10.1097/00002060-200211001-00007
                © 2002

                Comments

                Comment on this article