11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Patients with sickle cell anemia on simple chronic transfusion protocol show sex differences for hemodynamic and hematologic responses to transfusion.

      Transfusion
      Wiley

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chronic transfusion therapy (CTT) is a mainstay for stroke prophylaxis in sickle cell anemia, but its effects on hemodynamics are poorly characterized. Transfusion improves oxygen-carrying capacity, reducing demands for high cardiac output, while decreasing hemoglobin (Hb)S%, reticulocyte count, and hemolysis. We hypothesized that transfusion would improve oxygen-carrying capacity, but that would be counteracted by a decrease in cardiac output due to increased hematocrit (Hct) and vascular resistance, leaving oxygen delivery unchanged.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Pulmonary hypertension as a risk factor for death in patients with sickle cell disease.

          The prevalence of pulmonary hypertension in adults with sickle cell disease, the mechanism of its development, and its prospective prognostic significance are unknown. We performed Doppler echocardiographic assessments of pulmonary-artery systolic pressure in 195 consecutive patients (82 men and 113 women; mean [+/-SD] age, 36+/-12 years). Pulmonary hypertension was prospectively defined as a tricuspid regurgitant jet velocity of at least 2.5 m per second. Patients were followed for a mean of 18 months, and data were censored at the time of death or loss to follow-up. Doppler-defined pulmonary hypertension occurred in 32 percent of patients. Multiple logistic-regression analysis, with the use of the dichotomous variable of a tricuspid regurgitant jet velocity of less than 2.5 m per second or 2.5 m per second or more, identified a self-reported history of cardiovascular or renal complications, increased systolic blood pressure, high lactate dehydrogenase levels (a marker of hemolysis), high levels of alkaline phosphatase, and low transferrin levels as significant independent correlates of pulmonary hypertension. The fetal hemoglobin level, white-cell count, and platelet count and the use of hydroxyurea therapy were unrelated to pulmonary hypertension. A tricuspid regurgitant jet velocity of at least 2.5 m per second, as compared with a velocity of less than 2.5 m per second, was strongly associated with an increased risk of death (rate ratio, 10.1; 95 percent confidence interval, 2.2 to 47.0; P<0.001) and remained so after adjustment for other possible risk factors in a proportional-hazards regression model. Pulmonary hypertension, diagnosed by Doppler echocardiography, is common in adults with sickle cell disease. It appears to be a complication of chronic hemolysis, is resistant to hydroxyurea therapy, and confers a high risk of death. Therapeutic trials targeting this population of patients are indicated. Copyright 2004 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical subphenotypes.

            Hemolysis, long discounted as a critical measure of sickle cell disease severity when compared with sickle vaso-occlusion, may be the proximate cause of some disease complications. New mechanistic information about hemolysis and its effects on nitric oxide (NO) biology and further examination of the subphenotypes of disease requires a reappraisal and deconstruction of the clinical features of sickle cell disease. The biology underlying clinical phenotypes linked to hemolysis may increase our understanding of the pathogenesis of other chronic hemolytic diseases while providing new insights into treating sickle cell disease. The pathophysiological roles of dysregulated NO homeostasis and sickle reticulocyte adherence have linked hemolysis and hemolytic rate to sickle vasculopathy. Nitric oxide binds soluble guanylate cyclase which converts GTP to cGMP, relaxing vascular smooth muscle and causing vasodilatation. When plasma hemoglobin liberated from intravascularly hemolyzed sickle erythrocytes consumes NO, the normal balance of vasoconstriction:vasodilation is skewed toward vasoconstriction. Pulmonary hypertension, priapism, leg ulceration and stroke, all subphenotypes of sickle cell disease, can be linked to the intensity of hemolysis. Hemolysis plays less of a role in the vaso-occlusive-viscosity complications of disease like the acute painful episode, osteonecrosis of bone and the acute chest syndrome. Agents that decrease hemolysis or restore NO bioavailability or responsiveness may have potential to reduce the incidence and severity of the hemolytic subphenotypes of sickle cell disease. Some of these drugs are now being studied in clinical trials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vasculopathy in sickle cell disease: Biology, pathophysiology, genetics, translational medicine, and new research directions.

              Sickle cell disease has been very well characterized as a single amino acid molecular disorder of hemoglobin leading to its pathological polymerization, with resulting red cell rigidity that causes poor microvascular blood flow, with consequent tissue ischemia and infarction. More recently, an independent spectrum of pathophysiology of blood vessel function has been demonstrated, involving abnormal vascular tone and activated, adhesive endothelium. These vasculopathic abnormalities are attributable to pathways involving hemolysis-associated defects in nitric oxide bioavailability, oxidative stress, ischemia-reperfusion injury, hemostatic activation, leukocytes and platelets. Vasculopathy of sickle cell disease has been implicated in the development of pulmonary hypertension, stroke, leg ulceration and priapism, particularly associated with hemolytic severity, and reported also in other severe hemolytic disorders. This vasculopathy might also play a role in other chronic organ dysfunction in patients with sickle cell disease. These pathways present novel targets for pharmacologic intervention, and several clinical trials are already under way. The authors present their perspectives of a workshop held at the National Institutes of Health in August 2008 on vasculopathy in sickle cell disease, along with meritorious future scientific questions on the topic of vascular complications of sickle cell disease.
                Bookmark

                Author and article information

                Journal
                23176402
                3957479
                10.1111/j.1537-2995.2012.03961.x

                Comments

                Comment on this article