23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optimising Cell Aggregate Expansion in a Perfused Hollow Fibre Bioreactor via Mathematical Modelling

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The need for efficient and controlled expansion of cell populations is paramount in tissue engineering. Hollow fibre bioreactors (HFBs) have the potential to meet this need, but only with improved understanding of how operating conditions and cell seeding strategy affect cell proliferation in the bioreactor. This study is designed to assess the effects of two key operating parameters (the flow rate of culture medium into the fibre lumen and the fluid pressure imposed at the lumen outlet), together with the cell seeding distribution, on cell population growth in a single-fibre HFB. This is achieved using mathematical modelling and numerical methods to simulate the growth of cell aggregates along the outer surface of the fibre in response to the local oxygen concentration and fluid shear stress. The oxygen delivery to the cell aggregates and the fluid shear stress increase as the flow rate and pressure imposed at the lumen outlet are increased. Although the increased oxygen delivery promotes growth, the higher fluid shear stress can lead to cell death. For a given cell type and initial aggregate distribution, the operating parameters that give the most rapid overall growth can be identified from simulations. For example, when aggregates of rat cardiomyocytes that can tolerate shear stresses of up to are evenly distributed along the fibre, the inlet flow rate and outlet pressure that maximise the overall growth rate are predicted to be in the ranges to (equivalent to to ) and to (or 15.6 psi to 15.7 psi) respectively. The combined effects of the seeding distribution and flow on the growth are also investigated and the optimal conditions for growth found to depend on the shear tolerance and oxygen demands of the cells.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress.

          A bone tissue engineering strategy involving the in vitro expansion of cells on a scaffold before implantation into the body represents a promising alternative to current clinical treatments. To improve in vitro culture, bioreactor systems have been widely researched for bone tissue engineering purposes. Spinner flask, rotating wall bioreactors, and perfusion systems have all been the focus of experiments, and each system has advantages and disadvantages. This review seeks to summarize these efforts and provide the current status of research in this area. Research using spinner flasks and rotating wall bioreactors is discussed, but focus is placed on perfusion bioreactor systems. While spinner flasks and rotating wall bioreactors have been shown to improve in vitro culture conditions by increasing homogeneity of nutrients in the media, perfusion systems expose cells to shear stress and more efficiently enhance nutrient transfer. Enhanced mineralized matrix deposition and enhancement of osteoblastic signal expression in response to culture in these systems have been widely reported. This review provides analysis of the causes of these changes in signal expression as well as reports on bioreactor systems that have been commercialized. Copyright © 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stem cell cultivation in bioreactors.

            Cell-based therapies have generated great interest in the scientific and medical communities, and stem cells in particular are very appealing for regenerative medicine, drug screening and other biomedical applications. These unspecialized cells have unlimited self-renewal capacity and the remarkable ability to produce mature cells with specialized functions, such as blood cells, nerve cells or cardiac muscle. However, the actual number of cells that can be obtained from available donors is very low. One possible solution for the generation of relevant numbers of cells for several applications is to scale-up the culture of these cells in vitro. This review describes recent developments in the cultivation of stem cells in bioreactors, particularly considerations regarding critical culture parameters, possible bioreactor configurations, and integration of novel technologies in the bioprocess development stage. We expect that this review will provide updated and detailed information focusing on the systematic production of stem cell products in compliance with regulatory guidelines, while using robust and cost-effective approaches. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Effects of shear stress on 3-D human mesenchymal stem cell construct development in a perfusion bioreactor system: Experiments and hydrodynamic modeling.

              Shear stress is an important biomechanical parameter in regulating human mesenchymal stem cell (hMSC) construct development. In this study, the biomechanical characteristics of hMSCs within highly porous 3-D poly (ethylene terephthalate) (PET) matrices in a perfusion bioreactor system were analyzed for two flow rates of 0.1 and 1.5 mL/min, respectively over a 20-day culture period. A 1.4 times higher proliferation rate, higher CFU-F formation, and more fibronectin and HSP-47 secretion at day 20 were observed at the flow rate of 0.1 mL/min compared to those at the flow rate of 1.5 mL/min. The higher flow rate of 1.5 mL/min upregulated osteogenic differentiation potential at day 20 as measured by the expression of alkaline phosphatase activity and calcium deposition in the matrix after 14 days osteogenic induction, consistent with those reported in literatures. Mathematical modeling indicated that shear stress existed in the range of 1 x 10(-5) to 1 x 10(-4) Pa in the constructs up to a depth of 70 microm due to flow penetration in the porous constructs. Analysis of oxygen transport in the constructs for the two flow rates yielded oxygen levels significantly higher than those at which cell growth and metabolism are affected (Jiang et al., 1996). This indicates that differences in convective transport have no significant influence on cell growth and metabolism for the range of flow rates studied. These results demonstrate that shear stress is an important microenvironment parameter that regulates hMSC construct development at a range significantly lower than those reported previously in the perfusion system.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                26 August 2014
                : 9
                : 8
                : e105813
                Affiliations
                [1 ]Mathematical Institute, University of Oxford, Oxford, United Kingdom
                [2 ]Department of Mechanical Engineering, UCL, London, United Kingdom
                [3 ]Department of Computer Science, University of Oxford, Oxford, United Kingdom
                [4 ]Department of Chemical Engineering, University of Bath, Bath, United Kingdom
                University of Southampton, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LACC RJS JPW HMB SLW. Performed the experiments: LACC RJS MJE. Analyzed the data: LACC. Contributed reagents/materials/analysis tools: MJE. Wrote the paper: LACC. Edited and proofread manuscript: RJS JPW HMB SLW. Helped with writing code for numerical simulations: JPW.

                Article
                PONE-D-14-23437
                10.1371/journal.pone.0105813
                4144904
                25157635
                ad0b98fc-d48b-4851-9fd9-0ae4e92822e7
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 May 2014
                : 24 July 2014
                Page count
                Pages: 14
                Funding
                The work is primarily supported by an EPSRC Life Sciences Interface Doctoral Training Centre grant from the University of Oxford (EP/F500394/1). HMB is supported by King Abdullah University of Science and Technology, Saudi Arabia (Award No. KUK-C1-013-04). SLW is funded by the EPSRC through an Advanced Research Fellowship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biotechnology
                Bioengineering
                Biomedical Engineering
                Tissue Engineering
                Theoretical Biology
                Computer and Information Sciences
                Computer Modeling
                Engineering and Technology
                Physical Sciences
                Mathematics
                Applied Mathematics
                Calculus
                Differential Equations

                Uncategorized
                Uncategorized

                Comments

                Comment on this article