5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Costameres, dense plaques and podosomes: the cell matrix adhesions in cardiovascular mechanosensing

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The stiffness of the cardiovascular environment changes during ageing and in disease and contributes to disease incidence and progression. For instance, increased arterial stiffness can lead to atherosclerosis, while stiffening of the heart due to fibrosis can increase the chances of heart failure. Cells can sense the stiffness of the extracellular matrix through integrin adhesions and other mechanosensitive structures and in response to this initiate mechanosignalling pathways that ultimately change the cellular behaviour. Over the past decades, interest in mechanobiology has steadily increased and with this also our understanding of the molecular basis of mechanosensing and transduction. However, much of our knowledge about the mechanisms is derived from studies investigating focal adhesions in non-muscle cells, which are distinct in several regards from the cell–matrix adhesions in cardiomyocytes (costameres) or vascular smooth muscle cells (dense plaques or podosomes). Therefore, we will look here first at the evidence for mechanical sensing in the cardiovascular system, before comparing the different cytoskeletal arrangements and adhesion sites in cardiomyocytes and vascular smooth muscle cells and what is known about mechanical sensing through the various structures.

          Related collections

          Most cited references135

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiac Fibrosis: The Fibroblast Awakens.

          Myocardial fibrosis is a significant global health problem associated with nearly all forms of heart disease. Cardiac fibroblasts comprise an essential cell type in the heart that is responsible for the homeostasis of the extracellular matrix; however, upon injury, these cells transform to a myofibroblast phenotype and contribute to cardiac fibrosis. This remodeling involves pathological changes that include chamber dilation, cardiomyocyte hypertrophy and apoptosis, and ultimately leads to the progression to heart failure. Despite the critical importance of fibrosis in cardiovascular disease, our limited understanding of the cardiac fibroblast impedes the development of potential therapies that effectively target this cell type and its pathological contribution to disease progression. This review summarizes current knowledge regarding the origins and roles of fibroblasts, mediators and signaling pathways known to influence fibroblast function after myocardial injury, as well as novel therapeutic strategies under investigation to attenuate cardiac fibrosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function.

            Podosomes and invadopodia are actin-based dynamic protrusions of the plasma membrane of metazoan cells that represent sites of attachment to - and degradation of - the extracellular matrix. The key proteins in these structures include the actin regulators cortactin and neural Wiskott-Aldrich syndrome protein (N-WASP), the adaptor proteins Tyr kinase substrate with four SH3 domains (TKS4) and Tyr kinase substrate with five SH3 domains (TKS5), and the metalloprotease membrane type 1 matrix metalloprotease (MT1MMP; also known as MMP14). Many cell types can produce these structures, including invasive cancer cells, vascular smooth muscle and endothelial cells, and immune cells such as macrophages and dendritic cells. Recently, progress has been made in our understanding of the regulatory and functional aspects of podosome and invadopodium biology and their role in human disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of the myosinII-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation

              Focal adhesions (FAs) undergo myosinII-mediated maturation wherein they grow and change composition to modulate integrin signaling for cell migration, growth and differentiation. To determine how FA composition is modulated by myosinII activity, we performed proteomic analysis of isolated FAs and compared protein abundance in FAs from cells with and without myosinII inhibition. We identified FA 905 proteins, 459 of which changed in FA abundance with myosinII inhibition, defining the myosinII-responsive FA proteome. FA abundance of 73% of proteins was enhanced by contractility, including those involved in Rho-mediated FA maturation and endocytosis- and calpain-dependent FA disassembly. 27% of proteins, including those involved in Rac-mediated lamellipodial protrusion, were enriched in FA by myosinII inhibition, establishing for the first time negative regulation of FA protein recruitment by contractility. We focused on the Rac guanine nucleotide exchange factor, β-PIX, documenting its role in negative regulation of FA maturation and promotion of lamellipodial protrusion, FA turnover to drive cell migration.
                Bookmark

                Author and article information

                Contributors
                t.iskratsch@qmul.ac.uk
                Journal
                J Muscle Res Cell Motil
                J. Muscle Res. Cell. Motil
                Journal of Muscle Research and Cell Motility
                Springer International Publishing (Cham )
                0142-4319
                1573-2657
                18 June 2019
                18 June 2019
                2019
                : 40
                : 2
                : 197-209
                Affiliations
                ISNI 0000 0001 2171 1133, GRID grid.4868.2, Division of Bioengineering, School of Engineering and Materials Science & Institute for Bioengineering, , Queen Mary University of London, ; London, UK
                Author information
                http://orcid.org/0000-0002-3738-7830
                Article
                9529
                10.1007/s10974-019-09529-7
                6726830
                31214894
                ad0ea1f6-0857-4d9d-9386-911679671878
                © The Author(s) 2019

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 14 May 2019
                : 15 June 2019
                Funding
                Funded by: BBSRC
                Award ID: BB/S001123/1
                Award Recipient :
                Funded by: BHF
                Award ID: FS/14/30/30917
                Award Recipient :
                Categories
                Article
                Custom metadata
                © Springer Nature Switzerland AG 2019

                Molecular biology
                mechanosensing,cardiomyocytes,smooth muscle cells,costameres,dense plaques,podosomes
                Molecular biology
                mechanosensing, cardiomyocytes, smooth muscle cells, costameres, dense plaques, podosomes

                Comments

                Comment on this article