3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Antioxidant and Xanthine Oxidase Inhibitory Activity of Plumeria rubra Flowers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Plumeria rubra Linn of the family Apocynaceae is locally known in Malaysia as “Kemboja”. It has been used by local traditional medicine practitioners for the treatment of arthritis-related disease. The LCMS/MS analysis of the methanol extract of flowers (PR-ME) showed that it contains 3- O-caffeyolquinic acid, 5-caffeoquinic acid, 1,3-dicaffeoquinic acid, chlorogenic acid, citric acid, 3,3-di- O-methylellagic acid, kaempferol-3- O-glucoside, kaempferol-3-rutinoside, kaempferol, quercetin 3- O-α- l-arabinopyranoside, quercetin, quinic acid and rutin. The flower PR-ME contained high amounts of phenol and flavonoid at 184.632 mg GAE/g and 203.2.2 mg QE/g, respectively. It also exhibited the highest DPPH, FRAP, metal chelating, hydrogen peroxide, nitric oxide superoxide radical scavenging activity. Similarly, the XO inhibitory activity in vitro assay possesses the highest inhibition effects at an IC 50 = 23.91 μg/mL. There was no mortality or signs of toxicity in rats at a dose of 4 g/kg body weight. The administration of the flower PR-ME at doses of 400 mg/kg to the rats significantly reduced serum uric acid 43.77%. Similarly, the XO activity in the liver was significantly inhibited by flower PR-ME at doses of 400 mg/kg. These results confirm that the flower PR-ME of P. rubra contains active phytochemical compounds as detected in LCMS/MS that contribute to the inhibition of XO activity in vitro and in vivo in reducing acid uric level in serum and simultaneously scavenging the free radical to reduce the oxidative stress.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          A review on the dietary flavonoid kaempferol.

          Epidemiological studies have revealed that a diet rich in plant-derived foods has a protective effect on human health. Identifying bioactive dietary constituents is an active area of scientific investigation that may lead to new drug discovery. Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is a flavonoid found in many edible plants (e.g. tea, broccoli, cabbage, kale, beans, endive, leek, tomato, strawberries and grapes) and in plants or botanical products commonly used in traditional medicine (e.g. Ginkgo biloba, Tilia spp, Equisetum spp, Moringa oleifera, Sophora japonica and propolis). Some epidemiological studies have found a positive association between the consumption of foods containing kaempferol and a reduced risk of developing several disorders such as cancer and cardiovascular diseases. Numerous preclinical studies have shown that kaempferol and some glycosides of kaempferol have a wide range of pharmacological activities, including antioxidant, anti-inflammatory, antimicrobial, anticancer, cardioprotective, neuroprotective, antidiabetic, anti-osteoporotic, estrogenic/antiestrogenic, anxiolytic, analgesic and antiallergic activities. In this article, the distribution of kaempferol in the plant kingdom and its pharmacological properties are reviewed. The pharmacokinetics (e.g. oral bioavailability, metabolism, plasma levels) and safety of kaempferol are also analyzed. This information may help understand the health benefits of kaempferol-containing plants and may contribute to develop this flavonoid as a possible agent for the prevention and treatment of some diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Antioxidant and prooxidant properties of flavonoids.

            The interest in possible health benefits of flavonoids has increased owing to their potent antioxidant and free radical scavenging activities observed in vitro. Nevertheless, the antioxidant efficacy of flavonoids in vivo is less documented and their prooxidant properties have been actually described in vivo. Due to their prooxidant properties, they are able to cause oxidative damage by reacting with various biomolecules, such as lipids, proteins and DNA. Hence, the aim of this review is to discuss both the antioxidant and prooxidant effects of flavonoids. Copyright © 2011 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers.

              The structure-activity relationship of flavonoids as inhibitors of xanthine oxidase and as scavengers of the superoxide radical, produced by the action of the enzyme xanthine oxidase, was investigated. The hydroxyl groups at C-5 and C-7 and the double bond between C-2 and C-3 were essential for a high inhibitory activity on xanthine oxidase. Flavones showed slightly higher inhibitory activity than flavonols. All flavonoid derivatives except isorhamnetin (30) were less active than the original compounds. For a high superoxide scavenging activity on the other hand, a hydroxyl group at C-3' in ring B and at C-3 were essential. According to their effect on xanthine oxidase and as superoxide scavengers, the flavonoids could be classified into six groups: superoxide scavengers without inhibitory activity on xanthine oxidase (category A), xanthine oxidase inhibitors without any additional superoxide scavenging activity (category B), xanthine oxidase inhibitors with an additional superoxide scavenging activity (category C), xanthine oxidase inhibitors with an additional pro-oxidant effect on the production of superoxide (category D), flavonoids with a marginal effect on xanthine oxidase but with a prooxidant effect on the production of superoxide (category E), and finally, flavonoids with no effect on xanthine oxidase or superoxide (category F).
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                13 February 2018
                February 2018
                : 23
                : 2
                : 400
                Affiliations
                Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; sarwaniputri@ 123456gmail.com (S.S.P.M.I.); aablat@ 123456gmail.com (A.A.)
                Author notes
                [* ]Correspondence: jamal@ 123456um.edu.my ; Tel.: +60-3-7967-6735 or +60-1-7622-8572; Fax: +60-3-7967-4178
                Author information
                https://orcid.org/0000-0003-4952-5345
                https://orcid.org/0000-0001-6329-362X
                Article
                molecules-23-00400
                10.3390/molecules23020400
                6017381
                29438299
                ad277622-a395-432d-a7ed-4bff601748aa
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 26 October 2017
                : 23 November 2017
                Categories
                Article

                xanthine oxidase,plumeria rubra,antioxidant,phenol,flavonoid

                Comments

                Comment on this article