18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diagnosis and Treatment of Neurological and Ischemic Disorders Employing Carbon Nanotube Technology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Extensive research on carbon nanotubes has been conducted due to their excellent physicochemical properties. Based on their outstanding physicochemical properties, carbon nanotubes have the potential to be employed as theranostic tools for neurological pathologies such as Alzheimer’s disease and Parkinson’s disease including ischemic stroke diagnosis and treatment. Stroke is currently regarded as the third root cause of death and the leading source of immobility around the globe. The development and improvement of efficient and effective procedures for central nervous system disease diagnosis and treatment is necessitated. The main aim of this review is to discuss the application of nanotechnology, specifically carbon nanotubes, to the diagnosis and treatment of neurological disorders with an emphasis on ischemic stroke. Areas covered include the conventional current diagnosis and treatment of neurological disorders, as well as a critical review of the application of carbon nanotubes in the diagnosis and treatment of ischemic stroke, covering areas such as functionalization of carbon nanotubes and carbon nanotube-based biosensors. A broad perspective on carbon nanotube stimuli-responsiveness, carbon nanotube toxicity, and commercially available carbon nanotubes is provided. Potential future studies employing carbon nanotubes have been discussed, evaluating their extent of advancement in the diagnosis and treatment of neurological and ischemic disorders.

          Related collections

          Most cited references112

          • Record: found
          • Abstract: found
          • Article: not found

          DNA-assisted dispersion and separation of carbon nanotubes.

          Carbon nanotubes are man-made one-dimensional carbon crystals with different diameters and chiralities. Owing to their superb mechanical and electrical properties, many potential applications have been proposed for them. However, polydispersity and poor solubility in both aqueous and non-aqueous solution impose a considerable challenge for their separation and assembly, which is required for many applications. Here we report our finding of DNA-assisted dispersion and separation of carbon nanotubes. Bundled single-walled carbon nanotubes are effectively dispersed in water by their sonication in the presence of single-stranded DNA (ssDNA). Optical absorption and fluorescence spectroscopy and atomic force microscopy measurements provide evidence for individually dispersed carbon nanotubes. Molecular modelling suggests that ssDNA can bind to carbon nanotubes through pi-stacking, resulting in helical wrapping to the surface. The binding free energy of ssDNA to carbon nanotubes rivals that of two nanotubes for each other. We also demonstrate that DNA-coated carbon nanotubes can be separated into fractions with different electronic structures by ion-exchange chromatography. This finding links one of the central molecules in biology to a technologically very important nanomaterial, and opens the door to carbon-nanotube-based applications in biotechnology.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Individually Suspended Single-Walled Carbon Nanotubes in Various Surfactants

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation.

              We have shown previously that single-walled carbon nanotubes can be catalytically biodegraded over several weeks by the plant-derived enzyme, horseradish peroxidase. However, whether peroxidase intermediates generated inside human cells or biofluids are involved in the biodegradation of carbon nanotubes has not been explored. Here, we show that hypochlorite and reactive radical intermediates of the human neutrophil enzyme myeloperoxidase catalyse the biodegradation of single-walled carbon nanotubes in vitro, in neutrophils and to a lesser degree in macrophages. Molecular modelling suggests that interactions of basic amino acids of the enzyme with the carboxyls on the carbon nanotubes position the nanotubes near the catalytic site. Importantly, the biodegraded nanotubes do not generate an inflammatory response when aspirated into the lungs of mice. Our findings suggest that the extent to which carbon nanotubes are biodegraded may be a major determinant of the scale and severity of the associated inflammatory responses in exposed individuals.
                Bookmark

                Author and article information

                Journal
                Journal of Nanomaterials
                Journal of Nanomaterials
                Hindawi Limited
                1687-4110
                1687-4129
                2016
                2016
                : 2016
                :
                : 1-19
                Article
                10.1155/2016/9417874
                ad340a7b-06d1-42b9-afca-f80a57f73e28
                © 2016

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article