13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene

      ,
      Proceedings of the National Academy of Sciences
      Proceedings of the National Academy of Sciences

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: not found
          • Article: not found

          Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cloning of Nrf1, an NF-E2-related transcription factor, by genetic selection in yeast.

            We have devised a complementation assay in yeast to clone mammalian transcriptional activators and have used it to identify a human basic leucine-zipper transcription factor that we have designated Nrf1 for NF-E2-related factor 1. Nrf1 potentially encodes a 742-aa protein and displays marked homology to the mouse and human NF-E2 transcription factors. Nrf1 activates transcription via NF-E2 binding sites in yeast cells. The ubiquitous expression pattern of Nrf1 and the range of promoters containing the NF-E2 binding motif suggest that this gene may play a role in the regulation of heme synthesis and ferritin genes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Affinity purification of sequence-specific DNA binding proteins.

              We describe a method for affinity purification of sequence-specific DNA binding proteins that is fast and effective. Complementary chemically synthesized oligodeoxynucleotides that contain a recognition site for a sequence-specific DNA binding protein are annealed and ligated to give oligomers. This DNA is then covalently coupled to Sepharose CL-2B with cyanogen bromide to yield the affinity resin. A partially purified protein fraction is combined with competitor DNA and subsequently passed through the DNA-Sepharose resin. The desired sequence-specific DNA binding protein is purified because it preferentially binds to the recognition sites in the affinity resin rather than to the nonspecific competitor DNA in solution. For example, a protein fraction that is enriched for transcription factor Sp1 can be further purified 500- to 1000-fold by two sequential affinity chromatography steps to give Sp1 of an estimated 90% homogeneity with 30% yield. In addition, the use of tandem affinity columns containing different protein binding sites allows the simultaneous purification of multiple DNA binding proteins from the same extract. This method provides a means for the purification of rare sequence-specific DNA binding proteins, such as Sp1 and CAAT-binding transcription factor.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                December 10 1996
                December 10 1996
                : 93
                : 25
                : 14960-14965
                Article
                10.1073/pnas.93.25.14960
                8962164
                ad7192ad-1ac6-4277-8214-35150181d5f1
                © 1996
                History

                Comments

                Comment on this article