9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Inhibition of nitric oxide synthesis blocks the inhibitory response to capsaicin in intestinal circular muscle preparations from different species.

      Life Sciences
      Animals, Capsaicin, antagonists & inhibitors, pharmacology, Colon, metabolism, Guinea Pigs, Humans, Mice, Mice, Inbred Strains, Muscle Relaxation, drug effects, Muscle, Smooth, Nitric Oxide Synthase, Nitroarginine, Tetrodotoxin

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Moderate concentrations of the sensory stimulant drug capsaicin caused relaxation in human and animal intestinal circular muscle preparations (guinea-pig proximal, mouse distal colon, human small intestine and appendix) in vitro. With the exception of the guinea-pig colon, the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine (L-NOARG; 10(-4) M) strongly inhibited the relaxant effect of capsaicin. Tetrodotoxin, an inhibitor of voltage-sensitive Na+ channels failed to significantly reduce the inhibitory effect of capsaicin in the guinea-pig colon, human ileum and appendix; it caused an approximately 50% reduction in the mouse colon. The relaxant effect of capsaicin was strongly reduced in colonic preparations from transient receptor potential vanilloid type (TRPV1) receptor knockout mice as compared to their wildtype controls. It is concluded that nitric oxide, possibly of sensory origin, is involved in the relaxant action of capsaicin in the circular muscle of the mouse and human intestine.

          Related collections

          Author and article information

          Comments

          Comment on this article