5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Black hole binary dynamics from the double copy and effective theory

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          A bstract

          We describe a systematic framework for computing the conservative potential of a compact binary system using modern tools from scattering amplitudes and effective field theory. Our approach combines methods for integration and matching adapted from effective field theory, generalized unitarity, and the double-copy construction, which relates gravity integrands to simpler gauge-theory expressions. With these methods we derive the third post-Minkowskian correction to the conservative two-body Hamiltonian for spinless black holes. We describe in some detail various checks of our integration methods and the resulting Hamiltonian.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: not found
          Is Open Access

          Observation of Gravitational Waves from a Binary Black Hole Merger

          On September 14, 2015 at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory simultaneously observed a transient gravitational-wave signal. The signal sweeps upwards in frequency from 35 to 250 Hz with a peak gravitational-wave strain of 1.0×10(-21). It matches the waveform predicted by general relativity for the inspiral and merger of a pair of black holes and the ringdown of the resulting single black hole. The signal was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203,000 years, equivalent to a significance greater than 5.1σ. The source lies at a luminosity distance of 410(-180)(+160)  Mpc corresponding to a redshift z=0.09(-0.04)(+0.03). In the source frame, the initial black hole masses are 36(-4)(+5)M⊙ and 29(-4)(+4)M⊙, and the final black hole mass is 62(-4)(+4)M⊙, with 3.0(-0.5)(+0.5)M⊙c(2) radiated in gravitational waves. All uncertainties define 90% credible intervals. These observations demonstrate the existence of binary stellar-mass black hole systems. This is the first direct detection of gravitational waves and the first observation of a binary black hole merger.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found
            Is Open Access

            GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Infrared Photons and Gravitons

                Bookmark

                Author and article information

                Journal
                Journal of High Energy Physics
                J. High Energ. Phys.
                Springer Science and Business Media LLC
                1029-8479
                October 2019
                October 21 2019
                October 2019
                : 2019
                : 10
                Article
                10.1007/JHEP10(2019)206
                ad7a2ba8-bcdb-483c-99dc-3d72b97f28ed
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article