23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Prefrontal somatostatin interneurons encode fear memory

      research-article
      1 , 1 , *
      Nature neuroscience

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Theories stipulate that memories are encoded within networks of cortical projection neurons (PNs). Conversely, GABAergic interneurons (INs) are thought to function primarily to inhibit PNs and thereby impose network gain control, an important but purely modulatory role. Here we show in male mice that associative fear learning potentiates synaptic transmission and cue-specific activity of medial prefrontal cortex (mPFC) somatostatin interneurons (SST-INs), and that activation of these cells controls both memory encoding and expression. Furthermore, the synaptic organization of SST- and parvalbumin (PV)-INs provides a potential circuit basis for SST-IN-evoked disinhibition of mPFC output neurons and recruitment of remote brain regions associated with defensive behavior. These data suggest that rather than constrain mnemonic processing, potentiation of SST-IN activity represents an important causal mechanism for conditioned fear.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons.

          An understanding of the diversity of cortical GABAergic interneurons is critical to understand the function of the cerebral cortex. Recent data suggest that neurons expressing three markers, the Ca2+-binding protein parvalbumin (PV), the neuropeptide somatostatin (SST), and the ionotropic serotonin receptor 5HT3a (5HT3aR) account for nearly 100% of neocortical interneurons. Interneurons expressing each of these markers have a different embryological origin. Each group includes several types of interneurons that differ in morphological and electrophysiological properties and likely have different functions in the cortical circuit. The PV group accounts for ∼40% of GABAergic neurons and includes fast spiking basket cells and chandelier cells. The SST group, which represents ∼30% of GABAergic neurons, includes the Martinotti cells and a set of neurons that specifically target layerIV. The 5HT3aR group, which also accounts for ∼30% of the total interneuronal population, is heterogeneous and includes all of the neurons that express the neuropeptide VIP, as well as an equally numerous subgroup of neurons that do not express VIP and includes neurogliaform cells. The universal modulation of these neurons by serotonin and acetylcholine via ionotropic receptors suggests that they might be involved in shaping cortical circuits during specific brain states and behavioral contexts. Copyright © 2010 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical interneurons that specialize in disinhibitory control

            In the mammalian cerebral cortex, the diversity of interneuronal subtypes underlies a division of labor subserving distinct modes of inhibitory control 1–7 . A unique mode of inhibitory control may be provided by inhibitory neurons that specifically suppress the firing of other inhibitory neurons. Such disinhibition could lead to the selective amplification of local processing and serve the important computational functions of gating and gain modulation 8,9 . Although several interneuron populations are known to target other interneurons to varying degrees 10–15 , little is known about interneurons specializing in disinhibition and their in vivo function. Here we show that a class of interneurons that express vasoactive intestinal polypeptide (VIP) mediates disinhibitory control in multiple areas of neocortex and is recruited by reinforcement signals. By combining optogenetic activation with single cell recordings, we examined the functional role of VIP interneurons in awake mice, and investigated the underlying circuit mechanisms in vitro in auditory and medial prefrontal cortices. We identified a basic disinhibitory circuit module in which activation of VIP interneurons transiently suppresses primarily somatostatin- and a fraction of parvalbumin-expressing inhibitory interneurons that specialize in the control of the input and output of principal cells, respectively 3,6,16,17 . During the performance of an auditory discrimination task, reinforcement signals (reward and punishment) strongly and uniformly activated VIP neurons in auditory cortex, and in turn VIP recruitment increased the gain of a functional subpopulation of principal neurons. These results reveal a specific cell-type and microcircuit underlying disinhibitory control in cortex and demonstrate that it is activated under specific behavioural conditions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Switching on and off fear by distinct neuronal circuits.

              Switching between exploratory and defensive behaviour is fundamental to survival of many animals, but how this transition is achieved by specific neuronal circuits is not known. Here, using the converse behavioural states of fear extinction and its context-dependent renewal as a model in mice, we show that bi-directional transitions between states of high and low fear are triggered by a rapid switch in the balance of activity between two distinct populations of basal amygdala neurons. These two populations are integrated into discrete neuronal circuits differentially connected with the hippocampus and the medial prefrontal cortex. Targeted and reversible neuronal inactivation of the basal amygdala prevents behavioural changes without affecting memory or expression of behaviour. Our findings indicate that switching between distinct behavioural states can be triggered by selective activation of specific neuronal circuits integrating sensory and contextual information. These observations provide a new framework for understanding context-dependent changes of fear behaviour.
                Bookmark

                Author and article information

                Journal
                9809671
                21092
                Nat Neurosci
                Nat. Neurosci.
                Nature neuroscience
                1097-6256
                1546-1726
                20 November 2019
                16 December 2019
                January 2020
                16 June 2020
                : 23
                : 1
                : 61-74
                Affiliations
                [1 ]Department of Neuroscience and the Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
                Author notes

                Author contributions

                K.A.C. and R.L.C. initiated the project; R.L.C. supervised research; K.A.C. and R.L.C. designed experiments; K.A.C. performed the research and data analysis; R.L.C. and K.A.C. wrote the manuscript.

                [* ]Correspondence should be addressed to: roger.clem@ 123456mssm.edu
                Article
                NIHMS1541746
                10.1038/s41593-019-0552-7
                6930333
                31844314
                ad885a48-b971-4a7e-9375-ef01fe4f4769

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article