11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome profiling of Fagopyrum tataricum leaves in response to lead stress

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lead (Pb) pollution is a widespread environmental problem that is harmful to living organisms. Tartary buckwheat ( Fagopyrum tataricum), a member of the family Polygonaceae, exhibits short growth cycles and abundant biomass production, could be an ideal plant for phytoremediation due to its high Pb tolerance. Here, we aimed to explore the molecular basis underlying the responses of this plant to Pb stress.

          Results

          In our study, ultrastructural localization assays revealed that Pb ions primarily accumulate in leaf vacuoles. RNA deep sequencing (RNA-Seq) of tartary buckwheat leaves was performed on two Pb-treated samples, named Pb1 (2000 mg/kg Pb (NO 3) 2) and Pb2 (10,000 mg/kg Pb (NO 3) 2), and a control (CK). A total of 88,977 assembled unigenes with 125,203,555 bases were obtained. In total, 2400 up-regulated and 3413 down-regulated differentially expressed genes (DEGs) were identified between CK and Pb1, and 2948 up-regulated DEGs and 3834 down-regulated DEGs were generated between CK and Pb2, respectively. Gene Ontology (GO) and pathway enrichment analyses showed that these DEGs were primarily associated with ‘cell wall’, ‘binding’, ‘transport’, and ‘lipid and energy’ metabolism. The results of quantitative real-time PCR (qRT-PCR) analyses of 15 randomly selected candidate DEGs and 6 regulated genes were consistent with the results of the transcriptome analysis. Heterologous expression assays in the yeast strain Δycf1 indicated that overexpressing CCCH-type zinc finger protein 14 (ZFP14) enhanced sensitivity to Pb 2+, while 5 other genes, namely, metal transporter protein C2 (MTPC2), phytochelatin synthetase-like family protein (PCSL), vacuolar cation/proton exchanger 1a (VCE1a), natural resistance-associated macrophage protein 3 (Nramp3), and phytochelatin synthetase (PCS), enhanced the Pb tolerance of the mutant strain.

          Conclusion

          Combining our findings with those of previous studies, we generated a schematic model that shows the metabolic processes of tartary buckwheat under Pb stress. This study provides important data for further genomic analyses of the biological and molecular mechanisms of Pb tolerance and accumulation in tartary buckwheat.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Flavonoids as antioxidants in plants: location and functional significance.

          Stress-responsive dihydroxy B-ring-substituted flavonoids have great potential to inhibit the generation of reactive oxygen species (ROS) and reduce the levels of ROS once they are formed, i.e., to perform antioxidant functions. These flavonoids are located within or in the proximity of centers of ROS generation in severely stressed plants. Efficient mechanisms have been recently identified for the transport of flavonoids from the endoplasmic reticulum, the site of their biosynthesis, to different cellular compartments. The mechanism underlying flavonoid-mediated ROS reduction in plants is still unclear. 'Antioxidant' flavonoids are found in the chloroplast, which suggests a role as scavengers of singlet oxygen and stabilizers of the chloroplast outer envelope membrane. Dihydroxy B-ring substituted flavonoids are present in the nucleus of mesophyll cells and may inhibit ROS-generation making complexes with Fe and Cu ions. The genes that govern the biosynthesis of antioxidant flavonoids are present in liverworts and mosses and are mostly up-regulated as a consequence of severe stress. This suggests that the antioxidant flavonoid metabolism is a robust trait of terrestrial plants. Vacuolar dihydroxy B-ring flavonoids have been reported to serve as co-substrates for vacuolar peroxidases to reduce H(2)O(2) escape from the chloroplast, following the depletion of ascorbate peroxidase activity. Antioxidant flavonoids may effectively control key steps of cell growth and differentiation, thus acting regulating the development of the whole plant and individual organs. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Chemical studies of anthocyanins: A review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways.

              Recently, a major transcription system that controls abscisic-acid-independent gene expression in response to dehydration and low temperature has been identified. The system includes the DRE/CRT (dehydration-responsive element/C-repeat) cis-acting element and its DNA-binding protein, DREB/CBF (DRE-binding protein/C-repeat binding factor), which has an AP2 domain. DREB/CBF contains two subclasses, DREB1/CBF and DREB2, which are induced by cold and dehydration, respectively, and control the expression of various genes involved in stress tolerance. Recent studies are providing evidence of differences between dehydration-signaling and cold-stress-signaling cascades, and of cross-talk between them.
                Bookmark

                Author and article information

                Contributors
                wanglei880805@nwafu.edu.cn
                zhengbei19890119@163.com
                yy_nwsuaf@163.com
                xuql03@163.com
                pengchen@nwsuaf.edu.cn
                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central (London )
                1471-2229
                3 February 2020
                3 February 2020
                2020
                : 20
                : 54
                Affiliations
                ISNI 0000 0004 1760 4150, GRID grid.144022.1, Department of Biochemistry & Molecular Biology, College of Life Sciences, , Northwest A&F University, ; Yangling, 712100 Shaanxi China
                Article
                2265
                10.1186/s12870-020-2265-1
                6998078
                32013882
                ad88b985-526e-4b54-98b9-6ee85f34b8fc
                © The Author(s). 2020

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 29 January 2019
                : 23 January 2020
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100001809, National Natural Science Foundation of China;
                Award ID: Nos. 30400282, 31171606
                Award Recipient :
                Funded by: Key Reserach and Development Program of Shannxi Province
                Award ID: 2017NY-033
                Award Recipient :
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                Plant science & Botany
                fagopyrum tataricum,lead stress,transcriptome,ultrastructural localization,heterologous expression

                Comments

                Comment on this article