11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A pharmacoeconomic approach to assessing the costs and benefits of air quality interventions that improve health: a case study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          This paper explores the use of pharmacoeconomic methods of valuation to health impacts resulting from exposure to poor air quality. In using such methods, interventions that reduce exposure to poor air quality can be directly compared, in terms of value for money (or cost-effectiveness), with competing demands for finite resources, including other public health interventions.

          Design

          Using results estimated as part of a health impact assessment regarding a West Yorkshire Low Emission Zone strategy, this paper quantifies cost-saving and health-improving implications of transport policy through its impact on air quality.

          Data source

          Estimates of health-related quality of life and the National Health Service (NHS)/Personal Social Services (PSS) costs for identified health events were based on data from Leeds and Bradford using peer-reviewed publications or Office for National Statistics releases.

          Population

          Inhabitants of the area within the outer ring roads of Leeds and Bradford.

          Main outcomes measures

          NHS and PSS costs and quality-adjusted life years (QALYs).

          Results

          Averting an all-cause mortality death generates 8.4 QALYs. Each coronary event avoided saves £28 000 in NHS/PSS costs and generates 1.1 QALYs. For every fewer case of childhood asthma, there will be NHS/PSS cost saving of £3000 and a health benefit of 0.9 QALYs. A single term, low birthweight birth avoided saves £2000 in NHS/PSS costs. Preventing a preterm birth saves £24 000 in NHS/PSS costs and generates 1.3 QALYs. A scenario modelled in the West Yorkshire Low Emission Zone Feasibility Study, where pre-EURO 4 buses and HGVs are upgraded to EURO 6 by 2016 generates an annual benefit of £2.08 million and a one-off benefit of £3.3 million compared with a net present value cost of implementation of £6.3 million.

          Conclusions

          Interventions to improve air quality and health should be evaluated and where improvement of population health is the primary objective, cost-effectiveness analysis using a NHS/PSS costs and QALYs framework is an appropriate methodology.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010

          The Lancet, 380(9859), 2224-2260
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Short term exposure to air pollution and stroke: systematic review and meta-analysis

            Objective To review the evidence for the short term association between air pollution and stroke. Design Systematic review and meta-analysis of observational studies Data sources Medline, Embase, Global Health, Cumulative Index to Nursing and Allied Health Literature (CINAHL), and Web of Science searched to January 2014 with no language restrictions. Eligibility criteria Studies investigating the short term associations (up to lag of seven days) between daily increases in gaseous pollutants (carbon monoxide, sulphur dioxide, nitrogen dioxide, ozone) and particulate matter (<2.5 µm or <10 µm diameter (PM2.5 and PM10)), and admission to hospital for stroke or mortality. Main outcome measures Admission to hospital and mortality from stroke. Results From 2748 articles, 238 were reviewed in depth with 103 satisfying our inclusion criteria and 94 contributing to our meta-estimates. This provided a total of 6.2 million events across 28 countries. Admission to hospital for stroke or mortality from stroke was associated with an increase in concentrations of carbon monoxide (relative risk 1.015 per 1 ppm, 95% confidence interval 1.004 to 1.026), sulphur dioxide (1.019 per 10 ppb, 1.011 to 1.027), and nitrogen dioxide (1.014 per 10 ppb, 1.009 to 1.019). Increases in PM2.5 and PM10 concentration were also associated with admission and mortality (1.011 per 10 μg/m3 (1.011 to 1.012) and 1.003 per 10 µg/m3 (1.002 to 1.004), respectively). The weakest association was seen with ozone (1.001 per 10 ppb, 1.000 to 1.002). Strongest associations were observed on the day of exposure with more persistent effects observed for PM2·5. Conclusion Gaseous and particulate air pollutants have a marked and close temporal association with admissions to hospital for stroke or mortality from stroke. Public and environmental health policies to reduce air pollution could reduce the burden of stroke. Systematic review registration PROSPERO-CRD42014009225.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Long term exposure to ambient air pollution and incidence of acute coronary events: prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project

              Objectives To study the effect of long term exposure to airborne pollutants on the incidence of acute coronary events in 11 cohorts participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Design Prospective cohort studies and meta-analysis of the results. Setting Cohorts in Finland, Sweden, Denmark, Germany, and Italy. Participants 100 166 people were enrolled from 1997 to 2007 and followed for an average of 11.5 years. Participants were free from previous coronary events at baseline. Main outcome measures Modelled concentrations of particulate matter <2.5 μm (PM2.5), 2.5-10 μm (PMcoarse), and <10 μm (PM10) in aerodynamic diameter, soot (PM2.5 absorbance), nitrogen oxides, and traffic exposure at the home address based on measurements of air pollution conducted in 2008-12. Cohort specific hazard ratios for incidence of acute coronary events (myocardial infarction and unstable angina) per fixed increments of the pollutants with adjustment for sociodemographic and lifestyle risk factors, and pooled random effects meta-analytic hazard ratios. Results 5157 participants experienced incident events. A 5 μg/m3 increase in estimated annual mean PM2.5 was associated with a 13% increased risk of coronary events (hazard ratio 1.13, 95% confidence interval 0.98 to 1.30), and a 10 μg/m3 increase in estimated annual mean PM10 was associated with a 12% increased risk of coronary events (1.12, 1.01 to 1.25) with no evidence of heterogeneity between cohorts. Positive associations were detected below the current annual European limit value of 25 μg/m3 for PM2.5 (1.18, 1.01 to 1.39, for 5 μg/m3 increase in PM2.5) and below 40 μg/m3 for PM10 (1.12, 1.00 to 1.27, for 10 μg/m3 increase in PM10). Positive but non-significant associations were found with other pollutants. Conclusions Long term exposure to particulate matter is associated with incidence of coronary events, and this association persists at levels of exposure below the current European limit values.
                Bookmark

                Author and article information

                Journal
                BMJ Open
                BMJ Open
                bmjopen
                bmjopen
                BMJ Open
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2044-6055
                2016
                21 June 2016
                : 6
                : 6
                : e010686
                Affiliations
                [1 ]University of York, Centre for Health Economics , York, UK
                [2 ]Academic Unit of Health Economics, University of Leeds , Leeds, UK
                [3 ]City of Bradford Metropolitan District Council , Bradford, UK
                [4 ]Improvement Academy , Yorkshire and Humber Academic Health Science Network, UK
                [5 ]City of York Council , York, UK
                [6 ]Ecometrics Research and Consulting , Reading, UK
                [7 ]Wakefield Council , Wakefield, UK
                [8 ]Leeds City Council , Leeds, UK
                [9 ]CREAL (Centre de Recerca en Epidmiologia Ambiental)
                Author notes
                [Correspondence to ] Dr James Lomas; james.lomas@ 123456york.ac.uk
                Article
                bmjopen-2015-010686
                10.1136/bmjopen-2015-010686
                4916570
                27329439
                adcd3681-8992-450c-b477-f5a68a31752a
                Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

                This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/

                History
                : 26 November 2015
                : 3 March 2016
                : 7 April 2016
                Funding
                Funded by: National Institute for Health Research, http://dx.doi.org/10.13039/501100000272;
                Award ID: Health Economics & Outcomes Measurement (HEOM), NI
                Categories
                Public Health
                Research
                1506
                1724
                1701

                Medicine
                Medicine

                Comments

                Comment on this article