6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Conversion of oxybenzone sunscreen to phototoxic glucoside conjugates by sea anemones and corals

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The reported toxicity of oxybenzone-based sunscreens to corals has raised concerns about the impacts of ecotourist-shed sunscreens on corals already weakened by global stressors. However, oxybenzone’s toxicity mechanism(s) are not understood, hampering development of safer sunscreens. We found that oxybenzone caused high mortality of a sea anemone under simulated sunlight including ultraviolet (UV) radiation (290 to 370 nanometers). Although oxybenzone itself protected against UV-induced photo-oxidation, both the anemone and a mushroom coral formed oxybenzone–glucoside conjugates that were strong photo-oxidants. Algal symbionts sequestered these conjugates, and mortality correlated with conjugate concentrations in animal cytoplasm. Higher mortality in anemones that lacked symbionts suggests an enhanced risk from oxybenzone to corals bleached by rising temperatures. Because many commercial sunscreens contain structurally related chemicals, understanding metabolite phototoxicity should facilitate the development of coral-safe products.

          Sunscreen turned toxic

          Coral reefs face many serious threats from human activity. Sunscreens can cause reef damage, and although the precise mechanisms involved are still under study, some localities have already phased out common components such as oxybenzone. Using a sea anemone as a model system, Vuckovic et al . found that oxybenzone is modified within cells by attachment of glucose, turning it from a sunscreen into a potent photosensitizer (see the Perspective by Hansel). The glycoside conjugate is concentrated within the algal symbionts of anemones and corals, and bleached anemones are more susceptible to damage when exposed to ultraviolet light and oxybenzone, suggesting that the algae provide some protection to their hosts. These experiments add to our understanding of reef damage by sunscreens and may help to inform policy and new sunscreen development. —MAF

          Abstract

          Corals and anemones convert oxybenzone to phototoxins that are sequestered by their algae, raising risks for bleached reefs.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability

          We report a major update of the MAFFT multiple sequence alignment program. This version has several new features, including options for adding unaligned sequences into an existing alignment, adjustment of direction in nucleotide alignment, constrained alignment and parallel processing, which were implemented after the previous major update. This report shows actual examples to explain how these features work, alone and in combination. Some examples incorrectly aligned by MAFFT are also shown to clarify its limitations. We discuss how to avoid misalignments, and our ongoing efforts to overcome such limitations.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.

            PhyML is a phylogeny software based on the maximum-likelihood principle. Early PhyML versions used a fast algorithm performing nearest neighbor interchanges to improve a reasonable starting tree topology. Since the original publication (Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704), PhyML has been widely used (>2500 citations in ISI Web of Science) because of its simplicity and a fair compromise between accuracy and speed. In the meantime, research around PhyML has continued, and this article describes the new algorithms and methods implemented in the program. First, we introduce a new algorithm to search the tree space with user-defined intensity using subtree pruning and regrafting topological moves. The parsimony criterion is used here to filter out the least promising topology modifications with respect to the likelihood function. The analysis of a large collection of real nucleotide and amino acid data sets of various sizes demonstrates the good performance of this method. Second, we describe a new test to assess the support of the data for internal branches of a phylogeny. This approach extends the recently proposed approximate likelihood-ratio test and relies on a nonparametric, Shimodaira-Hasegawa-like procedure. A detailed analysis of real alignments sheds light on the links between this new approach and the more classical nonparametric bootstrap method. Overall, our tests show that the last version (3.0) of PhyML is fast, accurate, stable, and ready to use. A Web server and binary files are available from http://www.atgc-montpellier.fr/phyml/.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Spatial and temporal patterns of mass bleaching of corals in the Anthropocene

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Science
                Science
                American Association for the Advancement of Science (AAAS)
                0036-8075
                1095-9203
                May 06 2022
                May 06 2022
                : 376
                : 6593
                : 644-648
                Affiliations
                [1 ]Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA.
                [2 ]Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
                Article
                10.1126/science.abn2600
                35511969
                adf134bb-82d1-4c94-b05e-a72c2bd394e7
                © 2022
                History

                Comments

                Comment on this article