46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Organization and regulation of mitogen-activated protein kinase signaling pathways

      ,
      Current Opinion in Cell Biology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mitogen-activated protein kinases (MAPKs) are components of a three kinase regulatory cascade. There are multiple members of each component family of kinases in the MAPK module. Specificity of regulation is achieved by organization of MAPK modules, in part, by use of scaffolding and anchoring proteins. Scaffold proteins bring together specific kinases for selective activation, sequestration and localization of signaling complexes. The recent elucidation of scaffolding mechanisms for MAPK pathways has begun to solve the puzzle of how specificity in signaling can be achieved for each MAPK pathway in different cell types and in response to different stimuli. As new MAPK members are defined, determining their organization in kinase modules will be critical in understanding their select role in cellular regulation.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          The structural basis for 14-3-3:phosphopeptide binding specificity.

          The 14-3-3 family of proteins mediates signal transduction by binding to phosphoserine-containing proteins. Using phosphoserine-oriented peptide libraries to probe all mammalian and yeast 14-3-3s, we identified two different binding motifs, RSXpSXP and RXY/FXpSXP, present in nearly all known 14-3-3 binding proteins. The crystal structure of 14-3-3zeta complexed with the phosphoserine motif in polyoma middle-T was determined to 2.6 A resolution. The bound peptide is in an extended conformation, with a tight turn created by the pS +2 Pro in a cis conformation. Sites of peptide-protein interaction in the complex rationalize the peptide library results. Finally, we show that the 14-3-3 dimer binds tightly to single molecules containing tandem repeats of phosphoserine motifs, implicating bidentate association as a signaling mechanism with molecules such as Raf, BAD, and Cbl.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein modules and signalling networks.

            T. Pawson (1995)
            Communication between cells assumes particular importance in multicellular organisms. The growth, migration and differentiation of cells in the embryo, and their organization into specific tissues, depend on signals transmitted from one cell to another. In the adult, cell signalling orchestrates normal cellular behaviour and responses to wounding and infection. The consequences of breakdowns in this signalling underlie cancer, diabetes and disorders of the immune and cardiovascular systems. Conserved protein domains that act as key regulatory participants in many of these different signalling pathways are highlighted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine.

              The highly conserved and ubiquitously expressed 14-3-3 family of proteins bind to a variety of proteins involved in signal transduction and cell cycle regulation. The nature and specificity of 14-3-3 binding is, however, not known. Here we show that 14-3-3 is a specific phosphoserine-binding protein. Using a panel of phosphorylated peptides based on Raf-1, we have defined the 14-3-3 binding motif and show that most of the known 14-3-3 binding proteins contain the motif. Peptides containing the motif could disrupt 14-3-3 complexes and inhibit maturation of Xenopus laevis oocytes. These results suggest that the interactions of 14-3-3 with signaling proteins are critical for the activation of signaling proteins. Our findings also suggest novel roles for serine/threonine phosphorylation in the assembly of protein-protein complexes.
                Bookmark

                Author and article information

                Journal
                Current Opinion in Cell Biology
                Current Opinion in Cell Biology
                Elsevier BV
                09550674
                April 1999
                April 1999
                : 11
                : 2
                : 211-218
                Article
                10.1016/S0955-0674(99)80028-3
                10209154
                ae314fc1-00f5-47c7-8bb8-aa8c58c5d6f6
                © 1999

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article