Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Novel Halovirus Hardycor1, and the Presence of Active (Induced) Proviruses in Four Haloarchaea

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The virus Hardycor1 was isolated in 1998 and infects the haloarchaeon Halorubrum coriense. DNA from a frozen stock (HC1) was sequenced and the viral genome found to be 45,142 bp of dsDNA, probably having redundant, circularly permuted termini. The genome showed little similarity (BLASTn) to known viruses. Only twenty-two of the 53 (41%) predicted proteins were significantly similar to sequences in the NCBI nr protein database (E-value ≤ 10 −15). Six caudovirus-like proteins were encoded, including large subunit terminase (TerL), major capsid protein (Mcp) and tape measure protein (Tmp). Hardycor1 was predicted to be a siphovirus (VIRFAM). No close relationship to other viruses was found using phylogenetic tree reconstructions based on TerL and Mcp. Unexpectedly, the sequenced virus stock HC1 also revealed two induced proviruses of the host: a siphovirus (Humcor1) and a pleolipovirus (Humcor2). A re-examination of other similarly sequenced, archival virus stocks revealed induced proviruses of Haloferax volcanii, Haloferax gibbonsii and Haloarcula hispanica, three of which were pleolipoviruses. One provirus (Halfvol2) of Hfx. volcanii showed little similarity (BLASTn) to known viruses and probably represents a novel virus group. The attP sequences of many pleolipoproviruses were found to be embedded in a newly detected coding sequence, split in the provirus state, that spans between genes for integrase and a downstream CxxC-motif protein. This gene might play an important role in regulation of the temperate state.

          Related collections

          Most cited references86

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data

          Summary: The two main functions of bioinformatics are the organization and analysis of biological data using computational resources. Geneious Basic has been designed to be an easy-to-use and flexible desktop software application framework for the organization and analysis of biological data, with a focus on molecular sequences and related data types. It integrates numerous industry-standard discovery analysis tools, with interactive visualizations to generate publication-ready images. One key contribution to researchers in the life sciences is the Geneious public application programming interface (API) that affords the ability to leverage the existing framework of the Geneious Basic software platform for virtually unlimited extension and customization. The result is an increase in the speed and quality of development of computation tools for the life sciences, due to the functionality and graphical user interface available to the developer through the public API. Geneious Basic represents an ideal platform for the bioinformatics community to leverage existing components and to integrate their own specific requirements for the discovery, analysis and visualization of biological data. Availability and implementation: Binaries and public API freely available for download at http://www.geneious.com/basic, implemented in Java and supported on Linux, Apple OSX and MS Windows. The software is also available from the Bio-Linux package repository at http://nebc.nerc.ac.uk/news/geneiousonbl. Contact: peter@biomatters.com
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identifying bacterial genes and endosymbiont DNA with Glimmer.

            The Glimmer gene-finding software has been successfully used for finding genes in bacteria, archaea and viruses representing hundreds of species. We describe several major changes to the Glimmer system, including improved methods for identifying both coding regions and start codons. We also describe a new module of Glimmer that can distinguish host and endosymbiont DNA. This module was developed in response to the discovery that eukaryotic genome sequencing projects sometimes inadvertently capture the DNA of intracellular bacteria living in the host. The new methods dramatically reduce the rate of false-positive predictions, while maintaining Glimmer's 99% sensitivity rate at detecting genes in most species, and they find substantially more correct start sites, as measured by comparisons to known and well-curated genes. We show that our interpolated Markov model (IMM) DNA discriminator correctly separated 99% of the sequences in a recent genome project that produced a mixture of sequences from the bacterium Prochloron didemni and its sea squirt host, Lissoclinum patella. Glimmer is OSI Certified Open Source and available at http://cbcb.umd.edu/software/glimmer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server

              When using conventional transmembrane topology and signal peptide predictors, such as TMHMM and SignalP, there is a substantial overlap between these two types of predictions. Applying these methods to five complete proteomes, we found that 30–65% of all predicted signal peptides and 25–35% of all predicted transmembrane topologies overlap. This impairs predictions of 5–10% of the proteome, hence this is an important issue in protein annotation. To address this problem, we previously designed a hidden Markov model, Phobius, that combines transmembrane topology and signal peptide predictions. The method makes an optimal choice between transmembrane segments and signal peptides, and also allows constrained and homology-enriched predictions. We here present a web interface (http://phobius.cgb.ki.se and http://phobius.binf.ku.dk) to access Phobius.
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                23 January 2021
                February 2021
                : 12
                : 2
                : 149
                Affiliations
                [1 ]Computational Biology Group, Max-Planck-Institute of Biochemistry, 82152 Martinsried, Germany; fpf@ 123456biochem.mpg.de
                [2 ]Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville 3010, Australia
                [3 ]Biodiversity Research Center, Academia Sinica, Nankang, Taipei 115, Taiwan; chiangpw@ 123456gate.sinica.edu.tw (P.-W.C.); sltang@ 123456gate.sinica.edu.tw (S.-L.T.)
                Author notes
                Author information
                https://orcid.org/0000-0002-1880-1960
                https://orcid.org/0000-0003-4691-3246
                Article
                genes-12-00149
                10.3390/genes12020149
                7911831
                33498646
                ae8ffa8c-76e4-4ffc-8104-2feb5d924db0
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 23 December 2020
                : 20 January 2021
                Categories
                Article

                archaea,haloarchaea,temperate virus,haloferax,haloarcula,halorubrum,halobacteria,pleolipovirus,caudovirus,siphovirus

                Comments

                Comment on this article