31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Celiac Cellular Phenotype, with Altered LPP Sub-Cellular Distribution, Is Inducible in Controls by the Toxic Gliadin Peptide P31-43

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP) gene was identified as strongly associated with CD using genome-wide association studies (GWAS). The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD) and controls, without and with treatment with A-gliadin peptide P31-43. We observed a “CD cellular phenotype” in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Integration of genetic and immunological insights into a model of celiac disease pathogenesis.

          Celiac disease (CD) is a gluten-sensitive enteropathy that develops in genetically susceptible individuals by exposure to cereal gluten proteins. This review integrates insights from immunological studies with results of recent genetic genome-wide association studies into a disease model. Genetic data, among others, suggest that viral infections are implicated and that natural killer effector pathways are important in the pathogenesis of CD, but most prominently these data converge with existing immunological findings that CD is primarily a T cell-mediated immune disorder in which CD4(+) T cells that recognize gluten peptides in the context of major histocompatibility class II molecules play a central role. Comparison of genetic pathways as well as genetic susceptibility loci between CD and other autoimmune and inflammatory disorders reveals that CD bears stronger resemblance to T cell-mediated organ-specific autoimmune than to inflammatory diseases. Finally, we present evidence suggesting that the high prevalence of CD in modern societies may be the by-product of past selection for increased immune responses to combat infections in populations in which agriculture and cereals were introduced early on in the post-Neolithic period.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular basis of celiac disease.

            Celiac disease (CD) is an intestinal disorder with multifactorial etiology. HLA and non-HLA genes together with gluten and possibly additional environmental factors are involved in disease development. Evidence suggests that CD4(+) T cells are central in controlling an immune response to gluten that causes the immunopathology, but the actual mechanisms responsible for the tissue damage are as yet only partly characterized. CD provides a good model for HLA-associated diseases, and insight into the mechanism of this disease may well shed light on oral tolerance in humans. The primary HLA association in the majority of CD patients is with DQ2 and in the minority of patients with DQ8. Gluten-reactive T cells can be isolated from small intestinal biopsies of celiac patients but not of non-celiac controls. DQ2 or DQ8, but not other HLA molecules carried by patients, are the predominant restriction elements for these T cells. Lesion-derived T cells predominantly recognize deamidated gluten peptides. A number of distinct T cell epitopes within gluten exist. DQ2 and DQ8 bind the epitopes so that the glutamic acid residues created by deamidation are accommodated in pockets that have a preference for negatively charged side chains. Evidence indicates that deamidation in vivo is mediated by the enzyme tissue transglutaminase (tTG). Notably, tTG can also cross-link glutamine residues of peptides to lysine residues in other proteins including tTG itself. This may result in the formation of complexes of gluten-tTG. These complexes may permit gluten-reactive T cells to provide help to tTG-specific B cells by a mechanism of intramolecular help, thereby explaining the occurrence of gluten-dependent tTG autoantibodies that is a characteristic feature of active CD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cell polarity-determining proteins Par-3 and PP-1 are involved in epithelial tight junction defects in coeliac disease.

              Epithelial barrier defects are well known in coeliac disease, but the mechanisms are only poorly defined. It is unclear, whether barrier disturbance reflects upregulated epithelial transcytosis or paracellular leakage. To characterise the molecular structure and function of the epithelial tight junction (TJ) and mechanisms of its dysregulation. Molecular analysis of proteins involved in TJ assembly and their regulation was performed by western blotting and confocal microscopy correlated to electrophysiology. A complex alteration of the composition of epithelial TJ proteins (with more pore-forming claudins like claudin-2 and a reduction in tightening claudins like claudin-3, -5 and -7) was found for protein expression and subcellular localisation, responsible for an increase in paracellular biotin-NHS uptake. In contrast, epithelial apoptosis was only moderately elevated (accounting for a minor portion of barrier defects) and epithelial gross lesions--for example, at cell extrusion zones, were absent. This TJ alteration was linked to an altered localisation/expression of proteins regulating TJ assembly, the polarity complex protein Par-3 and the serine-/threonine phosphatase PP-1. Changes in cell polarity proteins Par-3 and PP-1 are associated with altered expression and assembly of TJ proteins claudin-2, -3, -5 and -7 and ZO-1, causing paracellular leakage in active coeliac disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                22 November 2013
                : 8
                : 11
                : e79763
                Affiliations
                [1 ]Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
                [2 ]European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
                Bascom Palmer Eye Institute, University of Miami School of Medicine, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MVB SA RA. Performed the experiments: MN GL RK MS AG MC MG. Analyzed the data: MVB RA MN GL RK MS AG MC MG LG. Contributed reagents/materials/analysis tools: RT. Wrote the paper: MVB SA RA MN.

                Article
                PONE-D-13-30701
                10.1371/journal.pone.0079763
                3838353
                24278174
                aec606dc-b9f3-4a8c-88d7-090c90f45710
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 July 2013
                : 27 September 2013
                Page count
                Pages: 11
                Funding
                This study was supported by PRIN 2009 (Research Programs of National Interest), code CUP E61J11000300001. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article