6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The DNA-B of the non-phloem-limited bean dwarf mosaic virus (BDMV) is able to move the phloem-limited Abutilon mosaic virus (AbMV) out of the phloem, but DNA-B of AbMV is unable to confine BDMV to the phloem.

      1 ,
      Plant molecular biology
      Springer Nature America, Inc

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abutilon mosaic virus (AbMV) and bean dwarf mosaic virus (BDMV) are two phylogenetically related bipartite begomoviruses. While AbMV is restricted to phloem, BDMV spreads to non-phloem tissues. Cell-to-cell and long-distance movement of AbMV and BDMV were investigated after replacing the coat protein (CP) gene with the reporter gene encoding the green fluorescence protein (GFP). The DNA-A and DNA-B genomic components of AbMV and BDMV, and their pseudorecombinants (PR), were delivered to bean (Phaseolus vulgaris) seedlings and detached leaves with DNA-coated microprojectiles. Virus-associated fluorescence was observed with the confocal microscope. Delivery of AbMV and BDMV GFP reporters showed that the epidermal tissue was the main recipient of the viral DNA; the DNA-A of the two viruses was unable to move out of the recipient cells. AbMV DNA-A co-inoculated with AbMV DNA-B did not move from cell to cell in the epidermis and did not reach the phloem. However, co-inoculation of AbMV DNA-A with BDMV DNA-B resulted in PR cell-to-cell movement out of the epidermis and long-distance movement in the phloem. In contrast, BDMV DNA-A moved from cell to cell and over a long distance when co-inoculated with either its own DNA-B or with the DNA-B of AbMV. Thus, the DNA-B of the non-phloem-limited BDMV overcame the phloem limitation of AbMV. In the reciprocal case, the DNA-B of the phloem-limited AbMV did not confine the non-phloem limited BDMV to the phloem. Hence, we assume that the DNA-A component of BDMV includes determinants involved in the movement pattern of the virus in addition to the DNA-B-encoded BC1 and BV1 which have previously been shown to be involved in virus movement. The results also confirm that the CP is not necessary for virus movement; however, replacing the CP of AbMV and BDMV with GFP resulted in a decrease in symptom severity. DNA-B was involved in symptom severity; the B component of BDMV produced symptoms more severe than those induced by that of AbMV, whether in wild-type PRs or in PRs with CP-GFP replacement. It is interesting to note that when the GFP gene under the control of the CaMV 35S promoter (35S-GFP) was delivered to the bean tissue, with or without the DNA-B component of BDMV, GFP was expressed but did not move from cell to cell. However, when the 35S-GFP was delivered together with BDMV DNA-A and DNA-B, GFP showed cell-to-cell movement in the epidermis but was restricted to these cells. Hence, infection of cells with a functional bipartite begomovirus may facilitate cell-to-cell movement of macromolecules.

          Related collections

          Author and article information

          Journal
          Plant Mol. Biol.
          Plant molecular biology
          Springer Nature America, Inc
          0167-4412
          0167-4412
          Dec 2003
          : 53
          : 6
          Affiliations
          [1 ] Robert H. Smith Institute of Plant Sciences and Genetics, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel.
          Article
          5264595
          10.1023/B:PLAN.0000023662.25756.43
          15082926
          aedb698e-a80f-4f8a-8f50-d755a19f084b
          History

          Comments

          Comment on this article