0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent progress on kinetic control of chemical vapor deposition growth of high-quality wafer-scale transition metal dichalcogenides

      review-article
      , , , , , ,
      Nanoscale Advances
      RSC

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          2D transition metal dichalcogenides (TMDs) have attracted significant attention due to their unique physical properties. Chemical vapor deposition (CVD) is generally a promising method to prepare ideal TMD films with high uniformity, large domain size, good single-crystallinity, etc., at wafer-scale for commercial uses. However, the CVD-grown TMD samples often suffer from poor quality due to the improper control of reaction kinetics and lack of understanding about the phenomenon. In this review, we focus on several key challenges in the controllable CVD fabrication of high-quality wafer-scale TMD films and highlight the importance of the control of precursor concentration, nucleation density, and oriented growth. The remaining difficulties in the field and prospective directions of the related topics are further summarized.

          Abstract

          Wafer-scale TMD films are fabricated via CVD method, controlling precursor concentration, nucleation density and orientated growth. Precursor concentration is important for the ideal film. Nucleation and orientated growth allow large domain size or single crystalline TMDs.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Single-layer MoS2 transistors.

          Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ultrasensitive photodetectors based on monolayer MoS2.

            Two-dimensional materials are an emerging class of new materials with a wide range of electrical properties and potential practical applications. Although graphene is the most well-studied two-dimensional material, single layers of other materials, such as insulating BN (ref. 2) and semiconducting MoS2 (refs 3, 4) or WSe2 (refs 5, 6), are gaining increasing attention as promising gate insulators and channel materials for field-effect transistors. Because monolayer MoS2 is a direct-bandgap semiconductor due to quantum-mechanical confinement, it could be suitable for applications in optoelectronic devices where the direct bandgap would allow a high absorption coefficient and efficient electron-hole pair generation under photoexcitation. Here, we demonstrate ultrasensitive monolayer MoS2 phototransistors with improved device mobility and ON current. Our devices show a maximum external photoresponsivity of 880 A W(-1) at a wavelength of 561 nm and a photoresponse in the 400-680 nm range. With recent developments in large-scale production techniques such as liquid-scale exfoliation and chemical vapour deposition-like growth, MoS2 shows important potential for applications in MoS2-based integrated optoelectronic circuits, light sensing, biomedical imaging, video recording and spectroscopy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity.

              The large-scale growth of semiconducting thin films forms the basis of modern electronics and optoelectronics. A decrease in film thickness to the ultimate limit of the atomic, sub-nanometre length scale, a difficult limit for traditional semiconductors (such as Si and GaAs), would bring wide benefits for applications in ultrathin and flexible electronics, photovoltaics and display technology. For this, transition-metal dichalcogenides (TMDs), which can form stable three-atom-thick monolayers, provide ideal semiconducting materials with high electrical carrier mobility, and their large-scale growth on insulating substrates would enable the batch fabrication of atomically thin high-performance transistors and photodetectors on a technologically relevant scale without film transfer. In addition, their unique electronic band structures provide novel ways of enhancing the functionalities of such devices, including the large excitonic effect, bandgap modulation, indirect-to-direct bandgap transition, piezoelectricity and valleytronics. However, the large-scale growth of monolayer TMD films with spatial homogeneity and high electrical performance remains an unsolved challenge. Here we report the preparation of high-mobility 4-inch wafer-scale films of monolayer molybdenum disulphide (MoS2) and tungsten disulphide, grown directly on insulating SiO2 substrates, with excellent spatial homogeneity over the entire films. They are grown with a newly developed, metal-organic chemical vapour deposition technique, and show high electrical performance, including an electron mobility of 30 cm(2) V(-1) s(-1) at room temperature and 114 cm(2) V(-1) s(-1) at 90 K for MoS2, with little dependence on position or channel length. With the use of these films we successfully demonstrate the wafer-scale batch fabrication of high-performance monolayer MoS2 field-effect transistors with a 99% device yield and the multi-level fabrication of vertically stacked transistor devices for three-dimensional circuitry. Our work is a step towards the realization of atomically thin integrated circuitry.
                Bookmark

                Author and article information

                Journal
                Nanoscale Adv
                Nanoscale Adv
                NA
                NAADAI
                Nanoscale Advances
                RSC
                2516-0230
                5 May 2021
                15 June 2021
                5 May 2021
                : 3
                : 12
                : 3430-3440
                Affiliations
                [a] Department of Materials Science and Engineering, Southern University of Science and Technology Shenzhen 518055 People's Republic of China chengc@ 123456sustech.edu.cn 11930238@ 123456mail.sustech.edu.cn shir@ 123456mail.sustech.edu.cn 11812334@ 123456mail.sustech.edu.cn 11812333@ 123456mail.sustech.edu.cn 11812324@ 123456mail.sustech.edu.cn
                [b] Department of Physics and Center for Quantum Materials, Hong Kong University of Science and Technology Hong Kong People's Republic of China
                [c] Center for Infrastructure Engineering, Western Sydney University Kingswood NSW 2751 Australia abbasust@ 123456gmail.com
                Author information
                https://orcid.org/0000-0001-5976-3457
                Article
                d1na00171j
                10.1039/d1na00171j
                9417528
                36133721
                aeebfe24-81ff-4403-a9d7-d1d376e68525
                This journal is © The Royal Society of Chemistry
                History
                : 6 March 2021
                : 4 May 2021
                Page count
                Pages: 11
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Award ID: 51776094
                Award ID: 91963129
                Categories
                Chemistry
                Custom metadata
                Paginated Article

                Comments

                Comment on this article