1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Framework for the architecture of exoplanetary systems : I. Four classes of planetary system architecture

      , , ,
      Astronomy & Astrophysics
      EDP Sciences

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a novel, model-independent framework for studying the architecture of an exoplanetary system at the system level. This framework allows us to characterise, quantify, and classify the architecture of an individual planetary system. Our aim in this endeavour is to generate a systematic method to study the arrangement and distribution of various planetary quantities within a single planetary system. We propose that the space of planetary system architectures be partitioned into four classes: similar, mixed, anti-ordered, and ordered. We applied our framework to observed and synthetic multi-planetary systems, thereby studying their architectures of mass, radius, density, core mass, and the core water mass fraction. We explored the relationships between a system’s (mass) architecture and other properties. Our work suggests that: (a) similar architectures are the most common outcome of planet formation; (b) internal structure and composition of planets shows a strong link with their system architecture; (c) most systems inherit their mass architecture from their core mass architecture; (d) most planets that started inside the ice line and formed in-situ are found in systems with a similar architecture; and (e) most anti-ordered systems are expected to be rich in wet planets, while most observed mass ordered systems are expected to have many dry planets. We find, in good agreement with theory, that observations are generally biased towards the discovery of systems whose density architectures are similar, mixed, or anti-ordered. This study probes novel questions and new parameter spaces for understanding theory and observations. Future studies may utilise our framework to not only constrain the knowledge of individual planets, but also the multi-faceted architecture of an entire planetary system. We also speculate on the role of system architectures in hosting habitable worlds.

          Related collections

          Most cited references149

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          SciPy 1.0: fundamental algorithms for scientific computing in Python

          SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Matplotlib: A 2D Graphics Environment

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              TheGaiamission

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Astronomy & Astrophysics
                A&A
                EDP Sciences
                0004-6361
                1432-0746
                February 2023
                February 14 2023
                February 2023
                : 670
                : A68
                Article
                10.1051/0004-6361/202243751
                aef05477-8179-47da-a097-a64cedc1d3d5
                © 2023

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article