Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Cytotoxic Activity of Holothuria leucospilota Extract against Leishmania infantum In Vitro

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Leishmaniasis is a tropical parasitic infection. The resistance and toxicity issues are the major complications and remain significant consequences related to the treatment of leishmaniasis with the recent and classical drugs. Thus there is an immediate requirement to develop new compounds for the treatment of this protozoan disease. Sea cucumbers or holothurians are potentially presented as the marine sources of antimicrobial and cytotoxic compounds. The aim of this study was investigation of in vitro antileishmanial activity of methanol extract of body wall, coelomic fluid, and cuvierian organs of Holothuria leucospilota obtained from coastal parts of Persian Gulf against Leishmania infantum promastigotes and axenic amastigotes. The colorimetric MTT assay was used to determine L. infantum promastigotes and axenic amastigotes viability at different concentrations of the extracts and drug control (Glucantime®) at time dependent manner and the results are represented as IC 50 (50% of inhibitory concentration). Coelomic fluid was the most active extract among the three different extracts of H. leucospilota against L. infantum promastigotes and axenic amastigotes with IC 50s of 62.33  μg/mL and 22.4  μg/mL and 73  μg/mL and 46  μg/mL at 48 and 72 hours after treatment, respectively. Cuvierian organs extract showed less toxicity with IC 50s more than 1000  μg/mL for both Leishmania infantum axenic amastigotes and promastigotes forms after 48 and 72 hours of exposure. Results acquired from the present study propose that the sea cucumber H. leucospilota may be a provoking source of antileishmanial compounds and could be a lead source in the development of the potent antileishmanial and cytotoxic drugs.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Apoptotic markers in protozoan parasites

          The execution of the apoptotic death program in metazoans is characterized by a sequence of morphological and biochemical changes that include cell shrinkage, presentation of phosphatidylserine at the cell surface, mitochondrial alterations, chromatin condensation, nuclear fragmentation, membrane blebbing and the formation of apoptotic bodies. Methodologies for measuring apoptosis are based on these markers. Except for membrane blebbing and formation of apoptotic bodies, all other events have been observed in most protozoan parasites undergoing cell death. However, while techniques exist to detect these markers, they are often optimised for metazoan cells and therefore may not pick up subtle differences between the events occurring in unicellular organisms and multi-cellular organisms. In this review we discuss the markers most frequently used to analyze cell death in protozoan parasites, paying special attention to changes in cell morphology, mitochondrial activity, chromatin structure and plasma membrane structure/permeability. Regarding classical regulators/executors of apoptosis, we have reviewed the present knowledge of caspase-like and nuclease activities.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation of sphingoid bases of sea cucumber cerebrosides and their cytotoxicity against human colon cancer cells.

            Sea cucumber is a health-beneficial food, and contains a variety of physiologically active substances including glycosphingolipids. We show here the sphingoid base composition of cerebrosides prepared from sea cucumber and the cytotoxicity against human colon cancer cell lines. The composition of sphingoid bases prepared from sea cucumber was different from that of mammals, and the major constituents estimated from mass spectra had a branched C17-19 alkyl chain with 1-3 double bonds. The viability of DLD-1, WiDr and Caco-2 cells treated with sea cucumber sphingoid bases was reduced in a dose-dependent manner and was similar to that of cells treated with sphingosine. The sphingoid bases induced such a morphological change as condensed chromatin fragments and increased the caspase-3 activity, indicating that the sphingoid bases reduced the cell viability by causing apoptosis in these cells. Sphingolipids of sea cucumber might therefore serve as bioactive dietary components to suppress colon cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Review of the apoptosis pathways in pancreatic cancer and the anti-apoptotic effects of the novel sea cucumber compound, Frondoside A.

              Pancreatic cancer cells are resistant to the growth-inhibitory and apoptosis-inducing effects of conventional chemotherapeutic agents. There are multiple genetic and epigenetic events during the process of carcinogenesis that enable the cancer cells to avoid normal growth constraints and apoptosis. Investigation of the mechanisms involved has led to multiple strategies that encourage cell death and apoptosis to occur. The pathways involved are summarized in this review, together with some recently developed strategies to promote cell death in this cancer and with a particular focus on the frondoside A, a novel triterpenoid glycoside isolated from the Atlantic sea cucumber, Cucumaria frondosa. Frondoside A inhibited proliferation of AsPC-1 human pancreatic cancer cells in a concentration- and time-dependent manner, as measured by (3)H-thymidine incorporation and cell counting. In concert with inhibition of cell growth, frondoside A induced significant morphological changes consistent with apoptosis. Propidium iodide DNA staining showed an increase of sub-G0/G1 cell population of apoptotic cells induced by frondoside A. Frondoside A-induced apoptosis was confirmed by annexin V binding and TUNEL assay. Furthermore, western blotting showed a decrease in expression of Bcl-2 and Mcl-1, an increase in Bax expression, activation of caspases 3, 7, and 9, and an increase in the expression of the cyclin-dependent kinase inhibitor, p21. These findings show that frondoside A induced apoptosis in human pancreatic cancer cells through the mitochondrial pathway and activation of the caspase cascade. Finally, a very low concentration of frondoside A (10 mug/kg/day) inhibited growth of AsPC-1 xenografts in athymic mice. In conclusion, new chemotherapeutic agents are desperately needed for pancreatic cancer because of the poor responsiveness to currently available treatment options. Frondoside A has potent growth inhibitory effects on human pancreatic cancer cells, and the inhibition of proliferation is accompanied by marked apoptosis. Frondoside A may be valuable for the treatment or chemoprevention of this devastating disease.
                Bookmark

                Author and article information

                Journal
                Adv Pharmacol Sci
                Adv Pharmacol Sci
                APS
                Advances in Pharmacological Sciences
                Hindawi Publishing Corporation
                1687-6334
                1687-6342
                2016
                28 February 2016
                : 2016
                : 8195381
                Affiliations
                1Research Institute for Infectious Diseases of Digestive System, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
                2Department of Medical Parasitology and Mycology and Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
                3Department of Medical Parasitology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
                Author notes

                Academic Editor: Antonio Ferrer-Montiel

                Article
                10.1155/2016/8195381
                4789066
                27022392
                af2d3a6f-2109-4159-95b0-34a6f56aaeb6
                Copyright © 2016 Shahram Khademvatan et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 15 November 2015
                : 27 January 2016
                Categories
                Research Article

                Pharmacology & Pharmaceutical medicine
                Pharmacology & Pharmaceutical medicine

                Comments

                Comment on this article