3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Multimodal Functionalities of HIV-1 Integrase

      ,
      Viruses
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Integrase is the retroviral protein responsible for integrating reverse transcripts into cellular genomes. Co-packaged with viral RNA and reverse transcriptase into capsid-encased viral cores, human immunodeficiency virus 1 (HIV-1) integrase has long been implicated in reverse transcription and virion maturation. However, the underlying mechanisms of integrase in these non-catalytic-related viral replication steps have remained elusive. Recent results have shown that integrase binds genomic RNA in virions, and that mutational or pharmacological disruption of integrase-RNA binding yields eccentric virion particles with ribonucleoprotein complexes situated outside of the capsid shell. Such viruses are defective for reverse transcription due to preferential loss of integrase and viral RNA from infected target cells. Parallel research has revealed defective integrase-RNA binding and eccentric particle formation as common features of class II integrase mutant viruses, a phenotypic grouping of viruses that display defects at steps beyond integration. In light of these new findings, we propose three new subclasses of class II mutant viruses (a, b, and c), all of which are defective for integrase-RNA binding and particle morphogenesis, but differ based on distinct underlying mechanisms exhibited by the associated integrase mutant proteins. We also assess how these findings inform the role of integrase in HIV-1 particle maturation.

          Related collections

          Most cited references246

          • Record: found
          • Abstract: found
          • Article: not found

          Crystal structure at 3.5 A resolution of HIV-1 reverse transcriptase complexed with an inhibitor.

          A 3.5 angstrom resolution electron density map of the HIV-1 reverse transcriptase heterodimer complexed with nevirapine, a drug with potential for treatment of AIDS, reveals an asymmetric dimer. The polymerase (pol) domain of the 66-kilodalton subunit has a large cleft analogous to that of the Klenow fragment of Escherichia coli DNA polymerase I. However, the 51-kilodalton subunit of identical sequence has no such cleft because the four subdomains of the pol domain occupy completely different relative positions. Two of the four pol subdomains appear to be structurally related to subdomains of the Klenow fragment, including one containing the catalytic site. The subdomain that appears likely to bind the template strand at the pol active site has a different structure in the two polymerases. Duplex A-form RNA-DNA hybrid can be model-built into the cleft that runs between the ribonuclease H and pol active sites. Nevirapine is almost completely buried in a pocket near but not overlapping with the pol active site. Residues whose mutation results in drug resistance have been approximately located.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            HIV-1 integration in the human genome favors active genes and local hotspots.

            A defining feature of HIV replication is integration of the proviral cDNA into human DNA. The selection of chromosomal targets for integration is crucial for efficient viral replication, but the mechanism is poorly understood. Here we describe mapping of 524 sites of HIV cDNA integration on the human genome sequence. Genes were found to be strongly favored as integration acceptor sites. Global analysis of cellular transcription indicated that active genes were preferential integration targets, particularly genes that were activated in cells after infection by HIV-1. Regional hotspots for integration were also found, including a 2.4 kb region containing 1% of sites. These data document unexpectedly strong biases in integration site selection and suggest how selective targeting promotes aggressive HIV replication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Assembly and analysis of conical models for the HIV-1 core.

              The genome of the human immunodeficiency virus (HIV) is packaged within an unusual conical core particle located at the center of the infectious virion. The core is composed of a complex of the NC (nucleocapsid) protein and genomic RNA, surrounded by a shell of the CA (capsid) protein. A method was developed for assembling cones in vitro using pure recombinant HIV-1 CA-NC fusion proteins and RNA templates. These synthetic cores are capped at both ends and appear similar in size and morphology to authentic viral cores. It is proposed that both viral and synthetic cores are organized on conical hexagonal lattices, which by Euler's theorem requires quantization of their cone angles. Electron microscopic analyses revealed that the cone angles of synthetic cores were indeed quantized into the five allowed angles. The viral core and most synthetic cones exhibited cone angles of approximately 19 degrees (the narrowest of the allowed angles). These observations suggest that the core of HIV is organized on the principles of a fullerene cone, in analogy to structures recently observed for elemental carbon.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                VIRUBR
                Viruses
                Viruses
                MDPI AG
                1999-4915
                May 2022
                April 28 2022
                : 14
                : 5
                : 926
                Article
                10.3390/v14050926
                35632668
                afb6f6e7-5f1c-46f3-93ce-87bd503f1726
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article