14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Glucokinase is the likely mediator of glucosensing in both glucose-excited and glucose-inhibited central neurons.

      Diabetes
      Animals, Brain, drug effects, enzymology, physiology, Carotid Artery, Internal, Gene Expression Regulation, Enzymologic, Genes, fos, Glucokinase, genetics, metabolism, Glucose, administration & dosage, pharmacology, In Situ Hybridization, Infusions, Intra-Arterial, Neurons, Obesity, Rats, Rats, Sprague-Dawley, Transcription, Genetic, Weight Gain

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Specialized neurons utilize glucose as a signaling molecule to alter their firing rate. Glucose-excited (GE) neurons increase and glucose-inhibited (GI) neurons reduce activity as ambient glucose levels rise. Glucose-induced changes in the ATP-to-ADP ratio in GE neurons modulate the activity of the ATP-sensitive K(+) channel, which determines the rate of cell firing. The GI glucosensing mechanism is unknown. We postulated that glucokinase (GK), a high-Michaelis constant (K(m)) hexokinase expressed in brain areas containing populations of GE and GI neurons, is the controlling step in glucosensing. Double-label in situ hybridization demonstrated neuron-specific GK mRNA expression in locus ceruleus norepinephrine and in hypothalamic neuropeptide Y, pro-opiomelanocortin, and gamma-aminobutyric acid neurons, but it did not demonstrate this expression in orexin neurons. GK mRNA was also found in the area postrema/nucleus tractus solitarius region by RT-PCR. Intracarotid glucose infusions stimulated c-fos expression in the same areas that expressed GK. At 2.5 mmol/l glucose, fura-2 Ca(2+) imaging of dissociated ventromedial hypothalamic nucleus neurons demonstrated GE neurons whose intracellular Ca(2+) oscillations were inhibited and GI neurons whose Ca(2+) oscillations were stimulated by four selective GK inhibitors. Finally, GK expression was increased in rats with impaired central glucosensing (posthypoglycemia and diet-induced obesity) but was unaffected by a 48-h fast. These data suggest a critical role for GK as a regulator of glucosensing in both GE and GI neurons in the brain.

          Related collections

          Author and article information

          Comments

          Comment on this article