15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability

      review-article
      , , *
      Pharmaceutics
      MDPI
      bioavailability, drug nanocrystals, polymers, stabilizer, surfactants

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drug nanocrystals are a versatile option for drug delivery purposes, and while the number of poorly soluble drug materials is all the time increasing, more research in this area is performed. Drug nanocrystals have a simple structure—a solid drug core is surrounded by a layer of stabilizing agent. However, despite the considerably simple structure, the selection of an appropriate stabilizer for a certain drug can be challenging. Mostly, the stabilizer selection is based purely on the requirement of physical stability, e.g., maintaining the nanosized particle size as long as possible after the formation of drug nanocrystals. However, it is also worth taking into account that stabilizer can affect the bioavailability in the final formulation via interactions with cells and cell layers. In addition, formation of nanocrystals is only one process step, and for the final formulation, more excipients are often added to the composition. The role of the stabilizers in the final formulation can be more than only stabilizing the nanocrystal particle size. A good example is the stabilizer’s role as cryoprotectant during freeze drying. In this review, the stabilizing effect, role of stabilizers in final nanocrystalline formulations, challenges in reaching in vitro–in vivo correlation with nanocrystalline products, and stabilizers’ effect on higher bioavailability are discussed.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC).

          The objective of this article is to review the spectrum of mathematical models that have been developed to describe drug release from hydroxypropyl methylcellulose (HPMC)-based pharmaceutical devices. The major advantages of these models are: (i) the elucidation of the underlying mass transport mechanisms; and (ii) the possibility to predict the effect of the device design parameters (e.g., shape, size and composition of HPMC-based matrix tablets) on the resulting drug release rate, thus facilitating the development of new pharmaceutical products. Simple empirical or semi-empirical models such as the classical Higuchi equation and the so-called power law, as well as more complex mechanistic theories that consider diffusion, swelling and dissolution processes simultaneously are presented, and their advantages and limitations are discussed. Various examples of practical applications to experimental drug release data are given. The choice of the appropriate mathematical model when developing new pharmaceutical products or elucidating drug release mechanisms strongly depends on the desired or required predictive ability and accuracy of the model. In many cases, the use of a simple empirical or semi-empirical model is fully sufficient. However, when reliable, detailed information are required, more complex, mechanistic theories must be applied. The present article is a comprehensive review of the current state of the art of mathematical modeling drug release from HPMC-based delivery systems and discusses the crucial points of the most important theories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The use of mucoadhesive polymers in ocular drug delivery.

            In the present update on mucoadhesive ocular dosage forms, the tremendous advances in the biochemistry of mucins, the development of new polymers, the use of drug complexes and other technological advances are discussed. This review focusses on recent literature regarding mucoadhesive liquid (viscous solutions, particulate systems), semi-solid (hydrogel, in situ gelling system) and solid dosage forms, with special attention to in vivo studies. Gel-forming minitablets and inserts made of thiomers show an interesting potential for future applications in the treatment of ocular diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The applications of Vitamin E TPGS in drug delivery.

              D-α-Tocopheryl polyethylene glycol 1000 succinate (simply TPGS or Vitamin E TPGS) is formed by the esterification of Vitamin E succinate with polyethylene glycol 1000. As novel nonionic surfactant, it exhibits amphipathic properties and can form stable micelles in aqueous vehicles at concentration as low as 0.02 wt%. It has been widely investigated for its emulsifying, dispersing, gelling, and solubilizing effects on poorly water-soluble drugs. It can also act as a P-glycoprotein (P-gp) inhibitor and has been served as an excipient for overcoming multidrug resistance (MDR) and for increasing the oral bioavailability of many anticancer drugs. Since TPGS has been approved by FDA as a safe pharmaceutic adjuvant, many TPGS-based drug delivery systems (DDS) have been developed. In this review, we discuss TPGS properties as a P-gp inhibitor, solubilizer/absorption and permeation enhancer in drug delivery and TPGS-related formulations such as nanocrystals, nanosuspensions, tablets/solid dispersions, adjuvant in vaccine systems, nutrition supplement, plasticizer of film, anticancer reagent and so on. This review will greatly impact and bring out new insights in the use of TPGS in DDS. Copyright © 2013 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Pharmaceutics
                Pharmaceutics
                pharmaceutics
                Pharmaceutics
                MDPI
                1999-4923
                20 May 2016
                June 2016
                : 8
                : 2
                : 16
                Affiliations
                Division of Pharmaceutical Chemistry and Technology, P.O. Box 56 (Viikinkaari 5 E), University of Helsinki, 00014 Helsinki, Finland; annika.tuomela@ 123456gmail.com (A.T.); jouni.hirvonen@ 123456helsinki.fi (J.H.)
                Author notes
                [* ]Correspondence: leena.peltonen@ 123456helsinki.fi ; Tel.: +358-50-448-0726
                Article
                pharmaceutics-08-00016
                10.3390/pharmaceutics8020016
                4932479
                27213435
                affc7876-d05b-4b38-acdc-b11e4d61ac60
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 15 March 2016
                : 16 May 2016
                Categories
                Review

                bioavailability,drug nanocrystals,polymers,stabilizer,surfactants

                Comments

                Comment on this article