20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Chemical biotechnology for the specific oxyfunctionalization of hydrocarbons on a technical scale.

      Biotechnology and Bioengineering
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxygenases catalyze, among other interesting reactions, highly selective hydrocarbon oxyfunctionalizations, which are important in industrial organic synthesis but difficult to achieve by chemical means. Many enzymatic oxygenations have been described, but few of these have been scaled up to industrial scales, due to the complexity of oxygenase based biocatalysts and demanding process implementation. We have combined recombinant whole-cell catalysis in a two-liquid phase system with fed-batch cultivation in an optimized medium and developed an industrially feasible process for the kinetically controlled and complex multistep oxidation of pseudocumene to 3,4-dimethylbenzaldehyde using the xylene monooxygenase of Pseudomonas putida mt-2 in Escherichia coli. Successful scale up to 30 L working volume using downscaled industrial equipment allowed a productivity of 31 g L(-1) d(-1) and a product concentration of 37 g L(-1). These performance characteristics meet present industry requirements. Product purification resulted in the recovery of 469 g of 3,4-dimethyl- benzaldehyde at a purity of 97% and an overall yield of 65%. This process illustrates the general feasibility of industrial biocatalytic oxyfunctionalization.

          Related collections

          Author and article information

          Journal
          12701150
          10.1002/bit.10637

          Comments

          Comment on this article

          scite_