28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Melanoma Brain Metastasis with a Donor-Patient Hybrid Genome following Bone Marrow Transplantation: First Evidence for Fusion in Human Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Tumor cell fusion with motile bone marrow-derived cells (BMDCs) has long been posited as a mechanism for cancer metastasis. While there is much support for this from cell culture and animal studies, it has yet to be confirmed in human cancer, as tumor and marrow-derived cells from the same patient cannot be easily distinguished genetically.

          Methods

          We carried out genotyping of a metastatic melanoma to the brain that arose following allogeneic bone-marrow transplantation (BMT), using forensic short tandem repeat (STR) length-polymorphisms to distinguish donor and patient genomes. Tumor cells were isolated free of leucocytes by laser microdissection, and tumor and pre-transplant blood lymphocyte DNAs were analyzed for donor and patient alleles at 14 autosomal STR loci and the sex chromosomes.

          Results

          All alleles in the donor and patient pre-BMT lymphocytes were found in tumor cells. The alleles showed disproportionate relative abundances in similar patterns throughout the tumor, indicating the tumor was initiated by a clonal fusion event.

          Conclusions

          Our results strongly support fusion between a BMDC and a tumor cell playing a role in the origin of this metastasis. Depending on the frequency of such events, the findings could have important implications for understanding the generation of metastases, including the origins of tumor initiating cells and the cancer epigenome.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material.

          Procedures utilizing Chelex 100 chelating resin have been developed for extracting DNA from forensic-type samples for use with the PCR. The procedures are simple, rapid, involve no organic solvents and do not require multiple tube transfers for most types of samples. The extraction of DNA from semen and very small bloodstains using Chelex 100 is as efficient or more efficient than using proteinase K and phenol-chloroform extraction. DNA extracted from bloodstains seems less prone to contain PCR inhibitors when prepared by this method. The Chelex method has been used with amplification and typing at the HLA DQ alpha locus to obtain the DQ alpha genotypes of many different types of samples, including whole blood, bloodstains, seminal stains, buccal swabs, hair and post-coital samples. The results of a concordance study are presented in which the DQ alpha genotypes of 84 samples prepared using Chelex or using conventional phenol-chloroform extraction are compared. The genotypes obtained using the two different extraction methods were identical for all samples tested.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis.

            The causes of metastasis remain elusive despite vast information on cancer cells. We posit that cancer cell fusion with macrophages or other migratory bone marrow-derived cells (BMDCs) provides an explanation. BMDC-tumour hybrids have been detected in numerous animal models and recently in human cancer. Molecular studies indicate that gene expression in such hybrids reflects a metastatic phenotype. Should BMDC-tumour fusion be found to underlie invasion and metastasis in human cancer, new approaches for therapy would surely follow.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming.

              The most deadly phase in cancer progression is attributed to the inappropriate acquisition of molecular machinery leading to metastatic transformation and spread of disease to distant organs. Although it is appreciated that metastasis involves epithelial-mesenchymal interplay, the underlying mechanism defining this process is poorly understood. Specifically, how cancer cells evade immune surveillance and gain the ability to navigate the circulatory system remains a focus. One possible mechanism underlying metastatic conversion is fusion between blood-derived immune cells and cancer cells. While this notion is a century old, in vivo evidence that cell fusion occurs within tumors and imparts genetic or physiologic changes remains controversial. We have previously demonstrated in vivo cell fusion between blood cells and intestinal epithelial cells in an injury setting. Here, we hypothesize that immune cells, such as macrophages, fuse with tumor cells imparting metastatic capabilities by transferring their cellular identity. We used parabiosis to introduce fluorescent-labeled bone marrow-derived cells to mice with intestinal tumors, finding that fusion between circulating blood-derived cells and tumor epithelium occurs during the natural course of tumorigenesis. Moreover, we identify the macrophage as a key cellular partner for this process. Interestingly, cell fusion hybrids retain a transcriptome identity characteristic of both parental derivatives, while also expressing a unique subset of transcripts. Our data supports the novel possibility that tumorigenic cell fusion may impart physical behavior attributed to migratory macrophages, including navigation of circulation and immune evasion. As such, cell fusion may represent a promising novel mechanism underlying the metastatic conversion of cancer cells. ©2011 AACR.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                26 June 2013
                : 8
                : 6
                : e66731
                Affiliations
                [1 ]Deptartment of Dermatology, Yale School of Medicine, New Haven, Connecticut, United States of America
                [2 ]The Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, United States of America
                [3 ]Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, Aurora, Colorado, United States of America
                [4 ]Denver Police Department Crime Lab, Denver, Colorado, United States of America
                [5 ]Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, United States of America
                [6 ]Medical Oncology, Yale School of Medicine, New Haven, Connecticut, United States of America
                [7 ]Statistics Department, Yale University, New Haven, Connecticut, United States of America
                National Institutes of Health, United States of America
                Author notes

                Competing Interests: Funding for this study was provided in part by an unrestricted gift from the Amway Corporation. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: JP GL JC. Performed the experiments: VK NS MS DC GL ED RL JP. Analyzed the data: JP GL RS JC RL. Contributed reagents/materials/analysis tools: JC GL JP NS. Wrote the paper: JP JC.

                Article
                PONE-D-13-09085
                10.1371/journal.pone.0066731
                3694119
                23840523
                b0172179-b67f-4939-a7c7-ba28caa11e72
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 February 2013
                : 9 May 2013
                Page count
                Pages: 7
                Funding
                Funding was provided in part by an unrestricted gift from the Amway Corporation and from the University of Colorado Cancer Center NCI Support Grant (P30CA046934). Additional costs were covered internally by the involved institutions: Yale University, the University of Colorado, and the Denver Police Crime Lab. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Evolutionary Biology
                Evolutionary Processes
                Hybridization
                Genetics
                Genomics
                Immunology
                Immune Cells
                Monocytes
                Immune Response
                Molecular Cell Biology
                Cellular Types
                Stem Cells
                Hematopoietic Stem Cells
                Blood Cells
                Bone Marrow Cells
                Hematopoietic Progenitor Cells
                Immune Cells
                Medicine
                Dermatology
                Skin Neoplasms
                Malignant Skin Neoplasms
                Melanomas
                Dermatologic Pathology
                Pigmentary Disorders
                Oncology
                Basic Cancer Research
                Metastasis
                Cancers and Neoplasms
                Neurological Tumors
                Brain Metastasis
                Skin Tumors
                Malignant Melanoma

                Uncategorized
                Uncategorized

                Comments

                Comment on this article