Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global Functional Analyses of Cellular Responses to Pore-Forming Toxins

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Here we present the first global functional analysis of cellular responses to pore-forming toxins (PFTs). PFTs are uniquely important bacterial virulence factors, comprising the single largest class of bacterial protein toxins and being important for the pathogenesis in humans of many Gram positive and Gram negative bacteria. Their mode of action is deceptively simple, poking holes in the plasma membrane of cells. The scattered studies to date of PFT-host cell interactions indicate a handful of genes are involved in cellular defenses to PFTs. How many genes are involved in cellular defenses against PFTs and how cellular defenses are coordinated are unknown. To address these questions, we performed the first genome-wide RNA interference (RNAi) screen for genes that, when knocked down, result in hypersensitivity to a PFT. This screen identifies 106 genes (∼0.5% of genome) in seven functional groups that protect Caenorhabditis elegans from PFT attack. Interactome analyses of these 106 genes suggest that two previously identified mitogen-activated protein kinase (MAPK) pathways, one (p38) studied in detail and the other (JNK) not, form a core PFT defense network. Additional microarray, real-time PCR, and functional studies reveal that the JNK MAPK pathway, but not the p38 MAPK pathway, is a key central regulator of PFT-induced transcriptional and functional responses. We find C. elegans activator protein 1 (AP-1; c-jun, c-fos) is a downstream target of the JNK-mediated PFT protection pathway, protects C. elegans against both small-pore and large-pore PFTs and protects human cells against a large-pore PFT. This in vivo RNAi genomic study of PFT responses proves that cellular commitment to PFT defenses is enormous, demonstrates the JNK MAPK pathway as a key regulator of transcriptionally-induced PFT defenses, and identifies AP-1 as the first cellular component broadly important for defense against large- and small-pore PFTs.

          Author Summary

          The plasma membrane surrounds cells and protects their interior from the environment and from attack by disease-causing agents like bacteria and viruses. Bacteria that cause disease have discovered that an effective way to attack cells is to secrete proteins (pore-forming toxins) that breach, i.e., form holes in, the plasma membrane. How cells deal with and survive this kind of attack is poorly understood. Here, we report on the first large-scale study of the genes and mRNA transcripts that respond to pore-forming toxin attack in cells. We find that a remarkable portion, >0.5%, of the cell's genome protects it against pore-forming toxins. These data led us to look more closely at mitogen-activated protein kinase pathways as regulators of pore-forming toxin defenses. We find that half of the PFT-induced protective response is controlled by a single, conserved signaling pathway in cells, which controls a complex array of downstream targets and which protects against both large pore and small pore toxins. Our results indicate that defense against pore-forming toxins is a very ancient defense that utilizes a much more complex and extensive response in cells than previously demonstrated.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          TLR signaling.

          The Toll-like receptor (TLR) family plays an instructive role in innate immune responses against microbial pathogens, as well as the subsequent induction of adaptive immune responses. TLRs recognize specific molecular patterns found in a broad range of microbial pathogens such as bacteria and viruses, triggering inflammatory and antiviral responses and dendritic cell maturation, which result in the eradication of invading pathogens. Individual TLRs interact with different combinations of adapter proteins and activate various transcription factors such as nuclear factor (NF)-kappaB, activating protein-1 and interferon regulatory factors, driving a specific immune response. This review outlines the recent advances in our understanding of TLR-signaling pathways and their roles in immune responses. Further, we also discuss a new concept of TLR-independent mechanisms for recognition of microbial pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Regulation of aging and age-related disease by DAF-16 and heat-shock factor.

            A.-L. Hsu (2003)
            The Caenorhabditis elegans transcription factor HSF-1, which regulates the heat-shock response, also influences aging. Reducing hsf-1 activity accelerates tissue aging and shortens life-span, and we show that hsf-1 overexpression extends lifespan. We find that HSF-1, like the transcription factor DAF-16, is required for daf-2-insulin/IGF-1 receptor mutations to extend life-span. Our findings suggest this is because HSF-1 and DAF-16 together activate expression of specific genes, including genes encoding small heat-shock proteins, which in turn promote longevity. The small heat-shock proteins also delay the onset of polyglutamine-expansion protein aggregation, suggesting that these proteins couple the normal aging process to this type of age-related disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identifying biological themes within lists of genes with EASE.

              EASE is a customizable software application for rapid biological interpretation of gene lists that result from the analysis of microarray, proteomics, SAGE and other high-throughput genomic data. The biological themes returned by EASE recapitulate manually determined themes in previously published gene lists and are robust to varying methods of normalization, intensity calculation and statistical selection of genes. EASE is a powerful tool for rapidly converting the results of functional genomics studies from 'genes' to 'themes'.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                March 2011
                March 2011
                3 March 2011
                : 7
                : 3
                : e1001314
                Affiliations
                [1 ]Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, United States of America
                [2 ]Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
                [3 ]Institute of Medical Microbiology and Hygiene, University Medical Center, Johannes Gutenberg-University Mainz, Hochhaus am Augustusplatz, Mainz, Germany
                [4 ]Groupe d'étude des protéines membranaires, Université de Montréal, Montreal, Quebec, Canada
                [5 ]Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America
                Massachusetts General Hospital and Harvard Medical School, United States of America
                Author notes

                Conceived and designed the experiments: CYK DLH NK MH RVA. Performed the experiments: CYK FCOL DLH NK MH VK AB CH YS MH CSH LC. Analyzed the data: CYK FCOL SW NK MH VK JLS RVA. Contributed reagents/materials/analysis tools: HF PG. Wrote the paper: CYK FCOL RVA.

                Article
                10-PLPA-RA-4043R2
                10.1371/journal.ppat.1001314
                3048360
                21408619
                b02cc4f8-e32b-4cbc-a657-cd1b88b7fddb
                Kao et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 August 2010
                : 4 February 2011
                Page count
                Pages: 17
                Categories
                Research Article
                Genetics and Genomics
                Genetics and Genomics/Functional Genomics
                Immunology
                Immunology/Innate Immunity
                Infectious Diseases
                Infectious Diseases/Bacterial Infections

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article