7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Neuro Patterns Prior to Error Responses in Long-Lasting Working Memory Task: An Event-Related Potential Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Few studies exist regarding the mechanism prior to response by which cognitive impairment may induce error in a single long-lasting task. The present study intends to clarify the changes in cognition at the electrophysiological level. Changes in amplitude and latency of N1, P2, N2, and P3 components of event-related potentials (ERPs) were analyzed for error and correct trials during normal and fatigue. Twenty-nine participants had to perform a 2-back working memory (WM) task for 100 min. The first 10 min and the last 10 min of the task were used as the normal state and fatigue state of the participant, respectively. EEG data were obtained from the first 10-min period and the final 10-min period. The results revealed smaller P3 and P2 amplitudes and longer P2 and N2 latency in the final 10-min which was after a long-lasting time task. Moreover, smaller P3 and P2 amplitudes but larger N2 amplitudes were observed in error trials for both states. Our results indicated that: (1) long lasting involvement in a cognitive task had a detrimental effect on attention, memory updating and cognitive control; and (2) impaired attention, impairments in memory updating and cognitive control were related to task errors. Our results imply that several impaired cognitive processes were consistently associated with the error and the altered ERP represents the neural patterns prior to error response in mental fatigue state.

          Related collections

          Most cited references72

          • Record: found
          • Abstract: found
          • Article: not found

          Influence of cognitive control and mismatch on the N2 component of the ERP: a review.

          Recent years have seen an explosion of research on the N2 component of the event-related potential, a negative wave peaking between 200 and 350 ms after stimulus onset. This research has focused on the influence of "cognitive control," a concept that covers strategic monitoring and control of motor responses. However, rich research traditions focus on attention and novelty or mismatch as determinants of N2 amplitude. We focus on paradigms that elicit N2 components with an anterior scalp distribution, namely, cognitive control, novelty, and sequential matching, and argue that the anterior N2 should be divided into separate control- and mismatch-related subcomponents. We also argue that the oddball N2 belongs in the family of attention-related N2 components that, in the visual modality, have a posterior scalp distribution. We focus on the visual modality for which components with frontocentral and more posterior scalp distributions can be readily distinguished.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Decision making, the P3, and the locus coeruleus-norepinephrine system.

            Psychologists and neuroscientists have had a long-standing interest in the P3, a prominent component of the event-related brain potential. This review aims to integrate knowledge regarding the neural basis of the P3 and to elucidate its functional role in information processing. The authors review evidence suggesting that the P3 reflects phasic activity of the neuromodulatory locus coeruleus-norepinephrine (LC-NE) system. They discuss the P3 literature in the light of empirical findings and a recent theory regarding the information-processing function of the LC-NE phasic response. The theoretical framework emerging from this research synthesis suggests that the P3 reflects the response of the LC-NE system to the outcome of internal decision-making processes and the consequent effects of noradrenergic potentiation of information processing. Copyright 2005 APA, all rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mental fatigue impairs physical performance in humans.

              Mental fatigue is a psychobiological state caused by prolonged periods of demanding cognitive activity. Although the impact of mental fatigue on cognitive and skilled performance is well known, its effect on physical performance has not been thoroughly investigated. In this randomized crossover study, 16 subjects cycled to exhaustion at 80% of their peak power output after 90 min of a demanding cognitive task (mental fatigue) or 90 min of watching emotionally neutral documentaries (control). After experimental treatment, a mood questionnaire revealed a state of mental fatigue (P = 0.005) that significantly reduced time to exhaustion (640 +/- 316 s) compared with the control condition (754 +/- 339 s) (P = 0.003). This negative effect was not mediated by cardiorespiratory and musculoenergetic factors as physiological responses to intense exercise remained largely unaffected. Self-reported success and intrinsic motivation related to the physical task were also unaffected by prior cognitive activity. However, mentally fatigued subjects rated perception of effort during exercise to be significantly higher compared with the control condition (P = 0.007). As ratings of perceived exertion increased similarly over time in both conditions (P < 0.001), mentally fatigued subjects reached their maximal level of perceived exertion and disengaged from the physical task earlier than in the control condition. In conclusion, our study provides experimental evidence that mental fatigue limits exercise tolerance in humans through higher perception of effort rather than cardiorespiratory and musculoenergetic mechanisms. Future research in this area should investigate the common neurocognitive resources shared by physical and mental activity.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Behav Neurosci
                Front Behav Neurosci
                Front. Behav. Neurosci.
                Frontiers in Behavioral Neuroscience
                Frontiers Media S.A.
                1662-5153
                18 December 2019
                2019
                : 13
                : 277
                Affiliations
                [1] 1National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center , Beijing, China
                [2] 2School of Biological Science and Medical Engineering, Beihang University (BUAA) , Beijing, China
                [3] 3School of Aerospace, Tsinghua University , Beijing, China
                [4] 4Cadre Ward Section, 306 Hospital of PLA , Beijing, China
                Author notes

                Edited by: Martín Cammarota, Federal University of Rio Grande do Norte, Brazil

                Reviewed by: Assunta Pompili, University of L’Aquila, Italy; Christos Frantzidis, Aristotle University of Thessaloniki, Greece

                Specialty section: This article was submitted to Learning and Memory, a section of the journal Frontiers in Behavioral Neuroscience

                Article
                10.3389/fnbeh.2019.00277
                6930164
                b05d2d41-4bed-4d74-ac65-a9fe5e3d0084
                Copyright © 2019 Xiao, Wu, Li, Tang, Ma, Sun, Yang, Zhan, Wang, Yan, Xu and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 11 July 2019
                : 05 December 2019
                Page count
                Figures: 5, Tables: 2, Equations: 44, References: 81, Pages: 11, Words: 7955
                Categories
                Behavioral Neuroscience
                Original Research

                Neurosciences
                error,neural pattern,fatigue,erp,working memory
                Neurosciences
                error, neural pattern, fatigue, erp, working memory

                Comments

                Comment on this article