Inviting an author to review:
Find an author and click ‘Invite to review selected article’ near their name.
Search for authorsSearch for similar articles
0
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Virtual Extended-Range Tomography (VERT): Contact-free realistic ultrasonic bone imaging

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ultrasound tomography generally struggles to reconstruct high-contrast and/or extended-range problems. A prime example is site-specific in-vivo bone imaging, crucial for accurately assessing the risk of life-threatening fractures, which are preventable given accurate diagnosis and treatment. In this type of problem, two main obstacles arise: (a) an external region prohibits access to the region of interest (ROI), and (b) high contrast exists between the two regions. These challenges impede existing algorithms -- including bent-ray tomography (BRT), known for its robustness, speed, and reasonable short-range resolution. We propose Virtual Extended-Range Tomography (VERT), which tackles these challenges through (a) placement of virtual transducers directly on the ROI, facilitating (b) rapid initialisation before BRT inversion. In-silico validation against BRT with and without a-priori information shows superior resolution and robustness -- while maintaining or even improving speed. These improvements are drastic where the external region is much larger than the ROI. Additional validation against the practically impossible -- BRT directly on the ROI -- demonstrates that VERT is approaching the resolution limit. The capability to solve high-contrast extended-range tomography problems without prior knowledge about the ROI's interior has many implications. VERT has the potential to unlock site-specific in-vivo bone imaging for assessing fracture risk, potentially saving millions of lives globally. In other applications, VERT may replace classical BRT to yield improvements in resolution, robustness and speed -- especially where the ROI does not cover the entire imaging array. For even higher resolution, VERT offers a reliable starting background to complement algorithms with less robustness and high computational costs.

          Related collections

          Author and article information

          Journal
          05 May 2024
          Article
          2405.03040
          b0c4e632-51e8-414f-935a-e81868d44b52

          http://creativecommons.org/licenses/by/4.0/

          History
          Custom metadata
          14 pages, 9 figures including graphical abstract. Submitted to IEEE T-UFFC
          eess.IV physics.med-ph

          Medical physics,Electrical engineering
          Medical physics, Electrical engineering

          Comments

          Comment on this article