Blog
About

3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Histone deacetylase function in CD4+ T cells

      ,

      Nature Reviews Immunology

      Springer Nature

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 133

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes.

          Histone acetyltransferases (HATs) and deacetylases (HDACs) function antagonistically to control histone acetylation. As acetylation is a histone mark for active transcription, HATs have been associated with active and HDACs with inactive genes. We describe here genome-wide mapping of HATs and HDACs binding on chromatin and find that both are found at active genes with acetylated histones. Our data provide evidence that HATs and HDACs are both targeted to transcribed regions of active genes by phosphorylated RNA Pol II. Furthermore, the majority of HDACs in the human genome function to reset chromatin by removing acetylation at active genes. Inactive genes that are primed by MLL-mediated histone H3K4 methylation are subject to a dynamic cycle of acetylation and deacetylation by transient HAT/HDAC binding, preventing Pol II from binding to these genes but poising them for future activation. Silent genes without any H3K4 methylation signal show no evidence of being bound by HDACs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Histone acetyltransferase complexes: one size doesn't fit all.

            Over the past 10 years, the study of histone acetyltransferases (HATs) has advanced significantly, and a number of HATs have been isolated from various organisms. It emerged that HATs are highly diverse and generally contain multiple subunits. The functions of the catalytic subunit depend largely on the context of the other subunits in the complex. We are just beginning to understand the specialized roles of HAT complexes in chromosome decondensation, DNA-damage repair and the modification of non-histone substrates, as well as their role in the broader epigenetic landscape, including the role of protein domains within HAT complexes and the dynamic interplay between HAT complexes and existing histone modifications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities.

              ATP-dependent chromatin-remodeling complexes are known to facilitate transcriptional activation by opening chromatin structures. We report a novel human complex, named NURD, which contains not only ATP-dependent nucleosome disruption activity, but also histone deacetylase activity, which usually associates with transcriptional repression. The deacetylation is stimulated by ATP on nucleosomal templates, suggesting that nucleosome disruption aids the deacetylase to access its substrates. One subunit of NURD was identified as MTA1, a metastasis-associated protein with a region similar to the nuclear receptor core-pressor, N-CoR; and antibodies against NURD partially relieve transcriptional repression by thyroid hormone receptor. These results suggest that ATP-dependent chromatin remodeling can participate in transcriptional repression by assisting repressors in gaining access to chromatin.
                Bookmark

                Author and article information

                Journal
                Nature Reviews Immunology
                Nat Rev Immunol
                Springer Nature
                1474-1733
                1474-1741
                July 18 2018
                Article
                10.1038/s41577-018-0037-z
                © 2018

                Comments

                Comment on this article